高等数学 4.2 换元积分法(一)第一类换元法

\(f(u)\) 具有原函数 \(F(u)\) ,即

\[F'(u) = f(u), \quad \int f(u) \mathrm{d}u = F(u) + C \]

如果 \(u\) 是中间变量:\(u = \varphi(x)\) ,且设 \(\varphi (x)\) 可微,那么根据复合函数微分法,有

\[\mathrm{d} F[\varphi (x)] = f[\varphi (x)] \varphi'(x) \mathrm{d} x \]

从而根据不定积分定义,得

\[\int f[\varphi (x)] \varphi'(x) \mathrm{d} x = F[\varphi (x)] + C = \left[ \int f(u) \mathrm{d}u \right]_{u = \varphi (x)} \]

于是有下述定理:

定理1 设 \(f(u)\) 具有原函数,\(u = \varphi(x)\) 可导,则有换元公式

\[\int f[\varphi (x)] \varphi'(x) \mathrm{d}x = \left[ \int f(u) \mathrm{d}u \right]_{u = \varphi (x)} . \tag{1} \]

由此定理可见,虽然 $ \int f[\varphi (x)] \varphi'(x) \mathrm{d}x $ 是一个整体的记号,但从形式上看,被积表达式中的 \(\mathrm{d}x\) 也可当做变量 \(x\) 的微分来对待,从而微分等式 \(\varphi'(x)\mathrm{d}x = \mathrm{d}u\) 可以方便地应用到被积表达式中来。

应用公式 \((1)\) 来求不定积分,可以设 \(\int \mathrm{g}(x)\mathrm{d}x\) ,如果函数 \(\mathrm{g}(x)\) 可以化为 \(\mathrm{g}(x) = f[\varphi(x)] \varphi'(x)\) 的形式,那么

\[\int \mathrm{g}(x)\mathrm{d}x = \int f[\varphi(x)] \varphi'(x) \mathrm{d}x = \left[ \int f(u)\mathrm{d}u \right]_{u = \varphi (x)} , \]

这样,函数 \(\mathrm{g}(x)\) 的积分即转化为函数 \(f(u)\) 的积分。如果能求得 \(f(u)\) 的原函数,那么也就得到了 \(\mathrm{g}(x)\) 的原函数。

例1 求 \(\int 2 \cos 2x \mathrm{d}x\)
解:被积函数中,\(\cos 2x\) 是一个由 \(\cos 2x = \cos u, u = 2x\) 复合而成的复合函数,常数因子恰好是中间变量 \(u\) 的导数。因此,做变换 \(u = 2x\) ,便有

\[\int 2 \cos 2x \mathrm{d}x = \int \cos 2x \cdot 2\mathrm{d}x = \int \cos 2x \cdot (2x)' \mathrm{d}x = \int \cos u \mathrm{d}u = \sin u + C, \]

再以 \(u = 2x\) 代入,即得

\[\int 2 \cos 2x \mathrm{d}x = \sin 2x + C. \]

例2 求 \(\int \cfrac{1}{3 + 2x} \mathrm{d}x\) .
解:被积函数 \(\cfrac{1}{3 + 2x} = \cfrac{1}{u} ,u = 3 + 2x\) 。这里缺少 \(\cfrac{\mathrm{d}u}{\mathrm{d}x} = 2\) 这样一个因子,但由于 \(\cfrac{\mathrm{d}u}{\mathrm{d}x}\) 是个常数,故可改变系数凑出这个因子:

\[\cfrac{1}{3 + 2x} = \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x} \cdot 2 = \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x}(3 + 2x)' , \]

从而令 \(u = 3 + 2x\) ,便有

\[\begin{align*} \int \cfrac{1}{3 + 2x} \mathrm{d}x &= \int \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x} (3 + 2x)' \mathrm{d}x = \int \cfrac{1}{2} \cdot \cfrac{1}{u} \mathrm{d}u \\ &= \cfrac{1}{2} \ln{|u|} + C = \cfrac{1}{2} \ln{|3 + 2x|} + C . \end{align*} \]

一般地,对于积分 \(\int f(ax + b) \mathrm{d}x (a \neq 0)\) ,总可作变换 \(u = ax + b\) ,把它化为

\[\int f(ax + b) \mathrm{d}x = \int \cfrac{1}{a} f(ax + b) \mathrm{d}(ax + b) = \cfrac{1}{a} \left[ \int f(u) \mathrm{d}u \right]_{u = ax + b} \]

例3 求 \(\int \cfrac{x^2}{(x + 2)^3} \mathrm{d}x\) .
解:令 \(u = x + 2, \mathrm{d}x = \mathrm{d}u\) ,于是

\[\begin{align*} \int \cfrac{x^2}{(x + 2)^3} \mathrm{d}x &= \int \cfrac{(u - 2)^2}{u^3} \mathrm{d}u = \int (u^2 - 4u + 4)u^{-3} \mathrm{d}u \\ &=\int (u^{-1} - 4u^{-2} + 4u^{-3}) \mathrm{d}u = \ln |u| + 4u^{-1} - 2u^{-2} + C \\ &= \ln |x + 2| + \cfrac{4}{x + 2} - \cfrac{2}{(x + 2)^2} + C \end{align*} \]

例4 求 \(\int 2x \mathrm{e}^{x^2} \mathrm{d}x\) .
解:被积函数中的一个因子为 \(\mathrm{e}^{x^2} = \mathrm{e}^u, u = x^2\) ,剩下的因子 \(2x\) 恰好是中间变量 \(u = x^2\) 的导数,于是有

\[\int 2x \mathrm{e}^{x^2} \mathrm{d}x = \int \mathrm{e}^{x^2} \mathrm{d}(x^2) = \int \mathrm{e}^u \mathrm{d}u = \mathrm{e}^u + C = \mathrm{e}^{x^2} + C. \]

例5 求 \(\int x \sqrt{1 - x^2} \mathrm{d}x\) .
解:设 \(u = 1 - x^2\) ,则 \(\mathrm{d}u = -2x \mathrm{d}x\) ,即 \(- \cfrac{1}{2} \mathrm{d}u = x \mathrm{d}x\) ,因此,

\[\int x \sqrt{1 - x^2} \mathrm{d}x = \int u^{\frac{1}{2}} \cdot \left(- \cfrac{1}{2} \right) \mathrm{d}u = - \cfrac{1}{2} \cfrac{u^{\frac{3}{2}}}{\frac{3}{2}} + C = - \cfrac{1}{3} (1 - x^2)^{\frac{3}{2}} + C . \]

例6 求 \(\int \cfrac{1}{a^2 + x^2} \mathrm{d}x\) .
解:

\[\int \cfrac{1}{a^2 + x^2} \mathrm{d}x = \int \cfrac{1}{a^2} \cdot \cfrac{1}{1 + \left( \cfrac{x}{a} \right)^2} \mathrm{d}x = \cfrac{1}{a} \int \cfrac{1}{1 + \left( \cfrac{x}{a} \right)^2} \mathrm{d} \cfrac{x}{a} = \cfrac{1}{a} \arctan{\cfrac{x}{a}} + C . \]

例7 求 \(\int \cfrac{\mathrm{d}x}{\sqrt{a^2 - x^2}}\) .
解:

\[\int \cfrac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \int \cfrac{1}{a} \cdot \cfrac{\mathrm{d}x}{\sqrt{1 - \left( \cfrac{x}{a} \right)^2}} = \int \cfrac{\mathrm{d} \cfrac{x}{a}}{\sqrt{1 - \left( \cfrac{x}{a} \right)^2}} = \arcsin{\cfrac{x}{a}} + C . \]

例8 求 \(\int \cfrac{1}{x^2 - a^2}\mathrm{d}x\) .
解:由于

\[\cfrac{1}{x^2 - a^2} = \cfrac{1}{2a} \left( \cfrac{1}{x - a} - \cfrac{1}{x + a} \right) , \]

所以

\[\begin{align*} \int \cfrac{1}{x^2 - a^2}\mathrm{d}x &= \cfrac{1}{2a} \int \left( \cfrac{1}{x - a} - \cfrac{1}{x + a} \right) \mathrm{d}x = \cfrac{1}{2a} \left( \int \cfrac{1}{x - a} \mathrm{d}x - \int \cfrac{1}{x + a}\mathrm{d}x \right) \\ &= \cfrac{1}{2a} \left[ \int \cfrac{1}{x - a} \mathrm{d}(x - a) - \int \cfrac{1}{x + a}\mathrm{d}(x + a) \right] \\ &= \cfrac{1}{2a} (\ln{|x - a|} - \ln{|x + a|}) + C \\ &= \cfrac{1}{2a} \ln{\left| \cfrac{x - a}{x + a} \right|} + C . \end{align*} \]

例9 求 \(\int \cfrac{\mathrm{d}x}{x(1 + 2\ln x)}\) .
解:

\[\int \cfrac{\mathrm{d}x}{x(1 + 2\ln x)} = \int \cfrac{\mathrm{d}(\ln x)}{1 + 2\ln x} = \cfrac{1}{2} \int \cfrac{\mathrm{d}(1 + 2\ln x)}{1 + 2\ln x} = \cfrac{1}{2} \ln{|1 + 2\ln x|} + C . \]

例10 求 \(\int \cfrac{\mathrm{e}^{3 \sqrt{x}}}{\sqrt x} \mathrm{d}x\) .
解:由于 \(\mathrm{d} \sqrt x = \cfrac{1}{2} \cfrac{\mathrm{d}x}{\sqrt x}\) ,因此,

\[\int \cfrac{\mathrm{e}^{3 \sqrt{x}}}{\sqrt x} \mathrm{d}x = 2 \int \mathrm{e}^{3 \sqrt{x}} \mathrm{d}\sqrt x = \cfrac{2}{3} \int \mathrm{e}^{3 \sqrt{x}} \mathrm{d}(3 \sqrt x) = \cfrac{2}{3} \mathrm{e}^{3 \sqrt{x}} + C . \]

例11 求 \(\int \sin^3 x \mathrm{d}x\) .
解:

\[\int \sin^3 x \mathrm{d}x = \int \sin^2 x \sin x \mathrm{d}x = - \int (1 - \cos^2 x) \mathrm{d}(\cos x) = - \cos x + \cfrac{1}{3} \cos^3 x + C . \]

例12 求 \(\int \sin^2x \cos^5x \mathrm{d}x\)
解:

\[\begin{align*} \int \sin^2x \cos^5x \mathrm{d}x &= \int \sin^2x \cos^4x \cos x \mathrm{d}x \\ &= \int \sin^2x (1 - \sin^2x)^2 \mathrm{d}(\sin x) \\ &= \int (\sin^2x - 2\sin^4x + \sin^6x) \mathrm{d}(\sin x) \\ &= \cfrac{1}{3} \sin^3x - \cfrac{2}{5} \sin^5x + \cfrac{1}{7} \sin^7x + C . \end{align*} \]

一般地,对于 \(\sin^{2k + 1}x \cos^n x\)\(\sin^n x \cos^{2k + 1} x\) (其中 \(k \in \mathbb{N}\))型函数的积分,总可依次作变换 \(u = \cos x\)\(u = \sin x\) ,求的结果。

例13 求 \(\int \tan x \mathrm{d}x\) .
解:

\[\int \tan x \mathrm{d}x = \int \cfrac{\sin x}{\cos x}\mathrm{d}x = - \int \cfrac{1}{\cos x}\mathrm{d}(\cos x) = - \ln{|\cos x|} + C . \]

类似地可得

\[\int \cot x \mathrm{d}x = \ln{|\sin x|} + C . \]

例14 求 \(\int \cos^2 x \mathrm{d}x\) .
解:

\[\begin{align*} \int \cos^2 x \mathrm{d}x &= \int \cfrac{1 + \cos 2x}{2} \mathrm{d}x \\ &= \cfrac{1}{2} \left( \int \mathrm{d}x + \int \cos 2x \mathrm{d}x \right) \\ &= \cfrac{1}{2} \int \mathrm{d}x + \cfrac{1}{4} \int \cos 2x \mathrm{d}(2x) \\ &= \cfrac{x}{2} + \cfrac{\sin 2x}{4} + C . \end{align*} \]

例15 求 \(\int \sin^2x \cos^4x \mathrm{d}x\) .
解:

\[\begin{align*} \int \sin^2x \cos^4x \mathrm{d}x &= \cfrac{1}{8} \int (1 - \cos 2x)(1 + \cos 2x)^2 \mathrm{d}x \\ &= \cfrac{1}{8} \int (1 + \cos 2x - \cos^2 2x - \cos^3 2x)\mathrm{d}x \\ &= \cfrac{1}{8} \int (\cos 2x - \cos^3 2x)\mathrm{d}x + \cfrac{1}{8} \int (1 - \cos^2 2x)\mathrm{d}x \\ &= \cfrac{1}{8} \int \sin^2 2x \cdot \cfrac{1}{2} \mathrm{d}(\sin 2x) + \cfrac{1}{8} \int \cfrac{1}{2} (1 - \cos 4x)\mathrm{d}x \\ &= \cfrac{1}{48} \sin^3 2x + \cfrac{x}{16} - \cfrac{1}{64} \sin 4x + C . \end{align*} \]

一般地,对于 \(\sin^{2k}x \cos^{2l}x (k, l \in \mathbb{N})\) 型函数,总可利用三角恒等式:\(\sin^2x = \cfrac{1}{2} (1 - \cos 2x), \cos^2x = \cfrac{1}{2}(1 + \cos 2x)\) 化成 \(\cos 2x\) 的多项式,然后采用例15中的方法求得积分。

例16 求 \(\int \sec^6x \mathrm{d}x\) .
解:

\[\begin{align*} \int \sec^6x \mathrm{d}x &= \int (\sec^2x)^2 \sec^2x \mathrm{d}x \\ &= \int (1 + \tan^2x)^2 \mathrm{d}(\tan x) \\ &= \int (1 + 2\tan^2x + \tan^4x)\mathrm{d}(\tan x) \\ &= \tan x + \cfrac{2}{3} \tan^3x + \cfrac{1}{5} \tan^5x + C . \end{align*} \]

例17 求 \(\int \tan^5x \sec^3x \mathrm{d}x\) .
解:

\[\begin{align*} \int \tan^5x \sec^3x \mathrm{d}x &= \int \tan^4x \sec^2x \sec x \tan x \mathrm{d}x \\ &= \int (\sec^2x - 1)^2 \sec^2x \mathrm{d}(\sec x) \\ &= \int (\sec^6x -2\sec^4x + \sec^2x) \mathrm{d}(\sec x) \\ &= \cfrac{1}{7}\sec^7x - \cfrac{2}{5}\sec^5x + \cfrac{1}{3}\sec^3x + C . \end{align*} \]

一般地,对于 \(\tan^nx \sec^{2k}x\)\(\tan^{2k - 1}x \sec^nx (n, k \in \mathbb{N}_+)\) 型函数的积分,可依次做变换 \(u = \tan x\)\(u = \sec x\) 求得结果。

例18 求 \(\int \csc x \mathrm{d}x\) .
解:

\[\begin{align*} \int \csc x \mathrm{d}x &= \int \cfrac{\mathrm{d}x}{\sin x} = \int \cfrac{\mathrm{d}x}{2 \sin{\cfrac{x}{2}} \cos{\cfrac{x}{2}}} \\ &= \int \cfrac{\mathrm{d} \left( \cfrac{x}{2} \right)}{\tan{\cfrac{x}{2}} \cos^2{\cfrac{x}{2}}} = \int \cfrac{\mathrm{d}\left( \tan \cfrac{x}{2} \right)}{\tan \cfrac{x}{2}} \\ &= \ln{\left| \tan \cfrac{x}{2} \right|} + C . \end{align*} \]

因为

\[\tan \cfrac{x}{2} = \cfrac{\sin \cfrac{x}{2}}{\cos \cfrac{x}{2}} = \cfrac{2 \sin^2 \cfrac{x}{2}}{\sin x} = \cfrac{1 - \cos x}{\sin x} = \csc x - \cot x , \]

所以上述不定积分又可表示为

\[\int \csc x \mathrm{d}x = \ln{|\csc x - \cot x|} + C . \]

例19 求 \(\int \sec x \mathrm{d}x\) .
解:利用上例结果,有

\[\begin{align*} \int \sec x \mathrm{d}x &= \int \csc{\left( x + \cfrac{\pi}{2} \right)} \mathrm{d} \left(x + \cfrac{\pi}{2} \right) \\ &= \ln{\left| \csc{\left( x + \cfrac{\pi}{2} \right)} - \cot{\left( x + \cfrac{\pi}{2} \right)} \right|} + C \\ &= \ln{|\sec x + \tan x|} + C . \end{align*} \]

例20 求 \(\int \cos 3x \cos 2x \mathrm{d}x\) .
解:利用三角函数积化和差公式

\[\cos A \cos B = \cfrac{1}{2}[\cos (A - B) + \cos (A + B)] \]

\[\cos 3x \cos 2x = \cfrac{1}{2}(\cos x + \cos 5x), \]

于是

\[\begin{align*} \int \cos 3x \cos 2x \mathrm{d}x &= \cfrac{1}{2} \int (\cos x + \cos 5x) \mathrm{d}x \\ &= \cfrac{1}{2} \left[ \int \cos x \mathrm{d}x + \cfrac{1}{5} \int \cos 5x \mathrm{d}(5x) \right] \\ &= \cfrac{1}{2} \sin x + \cfrac{1}{10} \sin 5x + C. \end{align*} \]

上述各例用的都是第一类换元法,即形如 \(u = \varphi (x)\) 的变量代换。

posted @ 2024-10-08 10:48  暮颜  阅读(59)  评论(0编辑  收藏  举报