数据结构和算法学习笔记十一:拓扑排序和关键路径代码实现
一.简介
关于拓扑排序和关键路径的理解见上一篇文章:数据结构和算法学习笔记十:图的拓扑排序和关键路径 - movin2333 - 博客园 (cnblogs.com).
本文使用的图使用邻接表实现,邻接表的图实现代码见:数据结构和算法学习笔记六:图的相关实现 - movin2333 - 博客园 (cnblogs.com).
二.代码
/************************************ * 创建人:movin * 创建时间:2021/7/20 8:35:37 * 版权所有:个人 ***********************************/ using System; using System.Collections.Generic; using System.Text; namespace GraphCore { /// <summary> /// AOV网工具,提供对AOV网进行拓扑排序和关键路径计算的方法 /// </summary> public class ActivityOnVertexNetworkUtil { /// <summary> /// 拓扑排序算法 /// </summary> /// <param name="graph"></param> /// <param name="findAVertexCallback">将顶点加入拓扑序列后的回调</param> /// <returns></returns> public static int[] TopologicalSort(AdjacencyListGraph graph,Action<int,AdjacencyListVertex> findAVertexCallback = null) { //存储运算结果的数组 int[] topologicalQueue = new int[graph.Count]; //已经加入数组的顶点下标个数 int hasFoundCount = 0; //已经遍历了边表的顶点个数 int hasSearchedCount = 0; //将所有顶点的入度转存到一个数组中(为了不破坏原有的图数据) int[] allInDegree = new int[graph.Count]; //初始化 for (int i = 0; i < graph.Count; i++) { allInDegree[i] = graph.vertices[i].InDegree; //将入度为0的下标加入数组中 if(allInDegree[i] == 0) { topologicalQueue[hasFoundCount++] = i; } } //循环遍历 while(hasFoundCount != hasSearchedCount) { var node = graph.vertices[hasSearchedCount].firstEdge; while (node != null) { int tempIndex = node.vertexIndex; allInDegree[tempIndex]--; if(allInDegree[tempIndex] == 0) { topologicalQueue[hasFoundCount++] = tempIndex; } node = node.next; } if(findAVertexCallback != null) { findAVertexCallback(hasSearchedCount, graph.vertices[hasSearchedCount]); } hasSearchedCount++; } return topologicalQueue; } /// <summary> /// 关键路径算法 /// </summary> /// <param name="graph"></param> /// <param name="findAArcCallback">找到一条在关键路径中的边后的回调</param> public static void CriticalPath(AdjacencyListGraph graph,Action<int,AdjacencyListEdgeNode> findAArcCallback = null) { //事件的最早开始时间 int[] earliestTimeOfVertex = new int[graph.Count]; //事件的最晚开始时间 int[] latestTimeOfVertex = new int[graph.Count]; //对顶点进行拓扑排序,得到排序后的顶点下标 //顶点拓扑排序的回调函数中就直接遍历求得事件的最早开始时间 int[] topologicalSortIndex = TopologicalSort(graph, (index, vertex) => { //初始化事件的最早开始事件,所有值置为0(可以不初始化,默认初始值就是0) //earliestTimeOfVertex[index] = 0; //遍历这个顶点的边表 for(AdjacencyListEdgeNode node = vertex.firstEdge;node != null;node = node.next) { int tempEarliestTimeOfVertex = earliestTimeOfVertex[index] + node.weight; if(tempEarliestTimeOfVertex > earliestTimeOfVertex[node.vertexIndex]) { earliestTimeOfVertex[node.vertexIndex] = tempEarliestTimeOfVertex; } } //初始化事件的最晚开始时间,所有值置为最大值 latestTimeOfVertex[index] = int.MaxValue; }); //拓扑序列最后一个顶点的最晚开始时间等于最早开始时间 int lastVertexIndex = topologicalSortIndex[topologicalSortIndex.Length - 1]; latestTimeOfVertex[lastVertexIndex] = earliestTimeOfVertex[lastVertexIndex]; //逆序遍历拓扑序列,得到最晚开始时间,并计算弧的冗余时间 for (int i = graph.Count - 2; i >= 0; i--) { int currentVertexIndex = topologicalSortIndex[i]; for (AdjacencyListEdgeNode node = graph.vertices[currentVertexIndex].firstEdge;node != null;node = node.next) { int tempLatestTimeOfVertex = latestTimeOfVertex[node.vertexIndex] - node.weight; if (tempLatestTimeOfVertex < latestTimeOfVertex[currentVertexIndex]) { latestTimeOfVertex[currentVertexIndex] = tempLatestTimeOfVertex; } //计算并判断遍历到的弧的冗余时间 //冗余时间为0,这条弧在关键路径上,调用回调函数 if(tempLatestTimeOfVertex - earliestTimeOfVertex[currentVertexIndex] == 0 && findAArcCallback != null) { findAArcCallback(currentVertexIndex, node); } } } } } }