2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest

题目传送门

题号 A B C D E F G H I J K
状态 Ο Ο Ο . Ø Ø Ø . Ο . .

 

Ο:当场

Ø:已补

.  :  待补

  

Secret of Chocolate Poles

简单dp

Thinking&Code:kk

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
typedef long long ll;
const int maxn=110;
ll dp[maxn][2],l,k;
int main(){
    while(cin>>l>>k)
    {
        clr(dp,0);
        dp[0][0]=1;
        for(int i=1;i<=l;i++)
        {
            dp[i][0]+=dp[i-1][1];
            dp[i][1]+=dp[i-1][0];
            if(i-k>=0){
                dp[i][1]+=dp[i-k][0];
            }
        }
        ll ans=0;
        for(int i=1;i<=l;i++)
        {
            ans+=dp[i][1];
        }
        printf("%lld\n",ans);
    }
}
View Code

 


Parallel Lines
Thinking:pai爷

Code:zz

搜索

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
typedef long long ll;
const int maxn=110;
int m;
struct node{
    int x,y;
}z[110];
pair<int,int>pa;
map<pair<int,int>, int>mp;
int ans,n;
bool vis[110];
inline int gcd(int n,int m)
{
    int r;
    if(n < m)
    {
        r = n;
        n = m;
        m = r;
    }
    while(n % m)
    {
        r = n % m;
        n = m;
        m = r;
    }
    return m;
}
inline void dfs(int cnt,int num)
{
    if(cnt == n / 2)
    {
        ans = max(ans,num);
        return;
    }
    int i,j;
    for(i=1;i<=n;i++) if(vis[i]==0) {vis[i]=1;break;}
    
    for(j = i + 1;j <= n;j++)
    {
        if(vis[j])
        {
            continue;
        }
        vis[j] = true;
        int r,a,b;
        if(z[i].x == z[j].x)
        {
            a = 400001;
            b = 400002;
        }
        else if(z[i].y == z[j].y)
        {
            a = 0;
            b = 0;
        }
        else
        {
            r = gcd(abs(z[i].x - z[j].x),abs(z[i].y - z[j].y));
            if((z[i].x - z[j].x) / r < 0)
            {
                r = -r;
            }
            a = (z[i].x - z[j].x) / r;
            b = (z[i].y - z[j].y) / r;
        }
        pa.first = a;
        pa.second = b;
        int sum = mp[pa] + num;
        ans = max(ans,sum);
        mp[pa]++;
        dfs(cnt + 1,sum);
        pa.first = a;
        pa.second = b;
        mp[pa]--;
        vis[j] = false;
    }
    vis[i] = false;
}
inline void init(void)
{
    memset(vis,false,sizeof(vis));
    mp.clear();
    ans = 0;
}
int main(){
    int i,j;
    while(~scanf("%d",&n))
    {
        init();
        for(i = 1;i <= n;i++)
        {
            scanf("%d %d",&z[i].x,&z[i].y);
        }
        dfs(0,0);
        printf("%d\n",ans);
    }
}
View Code

 

Medical Checkup

Thinking:pai爷 kk

Code :pai爷

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
typedef long long ll;
const int maxn=100010;
int n,a[maxn],ans[maxn],t;
void init()
{
    scanf("%d%d",&n,&t);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
}
void work()
{
    int q=a[1];
    ll sum=a[1];
    ans[1]=t/a[1]+1;
    for(int i=2;i<=n;i++)
    {
        sum+=a[i];
        if(a[i]>q) q=a[i];
        //printf("%d %d\n",sum,q); 
        if(t>=sum) ans[i]=(t-sum)/q+2;
        else ans[i]=1;
    }
    for(int i=1;i<=n;i++) printf("%d\n",ans[i]);
}
int main()
{
    init();
    work();
}
View Code

 

Black or White

 

Pizza Delivery

补题:kk

  假设原图的最短路径是$dis$,首先,求出1到v的距离$dis1[v]$和u到2的距离$dis2[u]$(建立正向图和反向图,两边dijkstra求出),那么对于一条边$(u,v,w)$,如果你把它反转之后使得路径更短了,那么必然是$dis1[v]+w+dis2[u]<dis$,只有这样才会优化。

  否则,如果$(u,v,w)$这条边是最短路的必经路径的话,那么最短路必定变长。

  现在我们考虑怎么判断一条路是最短路的必经路径。网上有所谓的tarjan求有向图的桥的模板,个人认为这是错误的,首先有向图没有桥的概念,其次那个板子,我同一组数据,把边的输入顺序换一下,得到的桥是不一样的。那么怎么做呢?

  如果现在我们把这幅图除了最短路上的其他边全部都去掉,得到一幅“最短路图”,如果我们把这个看成一个无向图的话,那么这个无向图的桥是不是就是最短路的必经边?

  所以现在我们把问题分解成了:1,建立最短路图,这个就判断$dis1[u]+w+dis2[v]==dis$就可以了,2,tarjan求无向图的桥。

  但这道题有一个坑点,就是题目说了会有重边,而tarjan解决重边是会有问题的,所以即便某条边在最短路图上是桥,我们还是必须得判断下这条边是否唯一,这个就用map来做。

  吐槽:网上的std一大半都是错的,能ac,但是我随便造个有重边的样例就能hack它,区域赛的后台数据也这么水吗?

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
const int maxn=100010;
typedef long long ll;
int dfn[maxn],low[maxn],tim;
struct edge{
    int from,to,id;
    ll w;
}a[maxn];
int n,m,tot,cnt,h1[maxn],h2[maxn];
int ans[maxn];
bool vis[maxn];
ll dis1[maxn],dis2[maxn];
map<pair<pair<int,int >, ll>,int >mp;
void init(){
    clr(h1,-1),clr(h2,-1);
    tot=cnt=0;
}
struct graph{
    int to,Next;
    int id;
    ll w;
}gra[maxn<<1],rgra[maxn];
void add1(int u,int v,ll w,int id){
    gra[++tot].to=v;
    gra[tot].w=w;
    gra[tot].Next=h1[u];
    gra[tot].id=id;
    h1[u]=tot;
}
void add2(int u,int v,ll w){
    rgra[++cnt].to=v;
    rgra[cnt].w=w;
    rgra[cnt].Next=h2[u];
    h2[u]=cnt;
}
struct node{
    int to;
    ll dis;
    friend bool operator<(const node &a,const node &b){
        return a.dis>b.dis;
    }
}st,ed;
void dij(){
    clr(dis1,0x3f);
    clr(vis,0);
    dis1[1]=0;
    priority_queue<node>q;
    q.push({1,0});
    while(!q.empty()){
        st=q.top();
        q.pop();
        int u=st.to;
        if(vis[u])continue;
        vis[u]=1;
        for(int i=h1[u];i!=-1;i=gra[i].Next)
        {
            int v=gra[i].to;
            if(dis1[v]>dis1[u]+gra[i].w){
                dis1[v]=dis1[u]+gra[i].w;
                    q.push({v,dis1[v]});
            }
        }
    }
}
void rdij(){
    clr(dis2,0x3f);
    clr(vis,0);
    dis2[2]=0;
    priority_queue<node>q;
    q.push({2,0});
    while(!q.empty()){
        st=q.top();
        q.pop();
        int u=st.to;
        if(vis[u])continue;
        vis[u]=1;
        for(int i=h2[u];i!=-1;i=rgra[i].Next)
        {
            int v=rgra[i].to;
            if(dis2[v]>dis2[u]+rgra[i].w){
                dis2[v]=dis2[u]+rgra[i].w;
                    q.push({v,dis2[v]});    
            }
        }
    }
}
void tarjan(int u,int fa){
    dfn[u]=low[u]=++tim;
    for(int i=h1[u];i!=-1;i=gra[i].Next)
    {
        int v=gra[i].to;
        if(dfn[v]==0){
            tarjan(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>dfn[u]){
                ans[gra[i].id]=1;
            }
        }else if(v!=fa){
            low[u]=min(low[u],dfn[v]);
        }
    }
}
int main(){
    while(cin>>n>>m){
        init();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%lld",&a[i].from,&a[i].to,&a[i].w);
            mp[make_pair(make_pair(a[i].from,a[i].to),a[i].w)]++;
            a[i].id=i;
            add1(a[i].from,a[i].to,a[i].w,a[i].id);
            add2(a[i].to,a[i].from,a[i].w);
        }
        dij();
        rdij();
        clr(h1,-1),tot=0;
        for(int i=1;i<=m;i++)
        {
        //    printf("i:%d  dis1:%d  dis2:%d  dis:%d  w:%d\n",i,dis1[a[i].from],dis2[a[i].to],dis1[2],a[i].w);
            if(dis1[a[i].from]+dis2[a[i].to]+a[i].w==dis1[2]){
        //        printf("u:%d v:%d w:%d\n",a[i].from,a[i].to,a[i].w);
                add1(a[i].from,a[i].to,a[i].w,a[i].id);
                add1(a[i].to,a[i].from,a[i].w,a[i].id);
            }
        }
        for(int i=1;i<=n;i++)
        {
            if(!dfn[i])tarjan(i,0);
        }
        for(int i=1;i<=m;i++)
        {
            int u=a[i].from,v=a[i].to;
            ll w=a[i].w;
            if(dis1[v]+w+dis2[u]<dis1[2]){
                puts("HAPPY");
            }else if(dis1[v]+w+dis2[u]==dis1[2]){
                
                puts("SOSO");
            }else {
            //    printf("ans:%d  mp:%d\n",ans[i],mp[make_pair(make_pair(a[i].from,a[i].to),a[i].w)]);
                if(ans[i]&&mp[make_pair(make_pair(a[i].from,a[i].to),a[i].w)]==1){
            //    printf("debug1\n");
                puts("SAD");
            }
                else {
            //    printf("debug2\n");
                puts("SOSO");
                }
            }
        }
        
    }
}
View Code

 

 

Rendezvous on a Tetrahedron

补题:zz

       题意:有两只虫,初始都在正四面体的A点,正四面体的边长为1,给定它们的爬行方向,问t时间后两只虫会不会在同一面上。

       思路:把正四面体用一维平面来表示(有很多小的正三角形(边长为1)拼成的一个大的正三角形),小虫初始在这个大的正三角形的一个顶点上,可以根据给定的角度算出虫子的最终位置在哪,再算出它在第几行的第几个小的正三角形上,这些小的正三角形的分布都是有规律的,很容易看出来,再算出这个小的正三角形对应的是正四面体的哪一面。

//#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<math.h>
#include<cmath>
#include<time.h>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<algorithm>
#include<numeric>
#include<stack>
#include<bitset>
#include<unordered_map>
const int maxn = 0x3f3f3f3f;
const double EI = 2.71828182845904523536028747135266249775724709369995957496696762772407663035354594571382178525166427;
const double PI = 3.141592653589793238462643383279;
//#ifdef TRUETRUE
//#define gets gets_s
//#endif
using namespace std;
char dir[15];
double angle, dis, h, l;
double sq3 = sqrt(3.0);
int a1, a2;
inline void counthl()
{
    double a;
    a = fabs(30.0 - angle);
    h = dis * cos(PI * a / 180.0);
    l = dis * sin(PI * a / 180.0);
    if (angle < 30)
    {
        l = -l;
    }
}
inline int solve(void)
{
    double cha, hen, cha2;
    counthl();
    a1 = (int)h + 1;
    a1 = 0;
    double hh = h;
    while (hh > sq3 / 2)
    {
        hh -= sq3 / 2;
        a1++;
    }
    a1++;
    if (a1 % 2 == 1)
    {
        cha = hh;
        hen = cha / sq3;
        if (fabs(l) < hen)
        {
            a2 = 0;
        }
        else
        {
            /*cha2 = fabs(l) - hen;
            a2 = (int)cha2 + 1;*/
            cha2 = fabs(l) - hen;
            a2 = ((int)cha2) * 2 + 1;
            double tmp = 1 - 2 * hen;
            cha2 -= (int)cha2;
            if (cha2 > tmp)
            {
                a2++;
            }
            if (l < 0)
            {
                a2 = -a2;
            }
        }
    }
    else
    {
        cha = sq3 / 2.0 - hh;
        hen = cha / sqrt(3.0);
        //printf("hen = %f\n",hen);
        if (fabs(l) < hen)
        {
            a2 = 0;
        }
        else
        {
            cha2 = fabs(l) - hen;
            a2 = ((int)cha2) * 2 + 1;
            double tmp = 1 - 2 * hen;
            cha2 -= (int)cha2;
            if (cha2 > tmp)
            {
                a2++;
            }
            //printf("***   a2 = %d,cha2 = %f\n",a2,cha2);
            if (l < 0)
            {
                a2 = -a2;
            }
        }
    }
    int a22 = a2;
    if (a2 < 0)
    {
        a2 = -a2;
    }
    if (l < 0)
    {
        a22 = -a2;
    }
    //printf("a1 = %d  a2 = %d  h = %f  l = %f %d\n",a1,a2,h,l,a22);
    if (dir[0] == 'B' && dir[1] == 'C')
    {
        if (a1 % 4 == 1 && a2 % 4 == 0 ||
            a1 % 4 == 2 && a2 % 4 == 2 ||
            a1 % 4 == 3 && a2 % 4 == 2 ||
            a1 % 4 == 0 && a2 % 4 == 0)
        {
            return 1;
        }
        else if (a1 % 4 == 1 && a2 % 4 == 2 ||
            a1 % 4 == 2 && a2 % 4 == 0 ||
            a1 % 4 == 3 && a2 % 4 == 0 ||
            a1 % 4 == 0 && a2 % 4 == 2)
        {
            return 4;
        }
        else if (a1 % 4 == 1 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 2 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 3 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3) ||
            a1 % 4 == 0 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3))
        {
            return 2;
        }
        else
        {
            return 3;
        }
    }
    else if (dir[0] == 'C' && dir[1] == 'D')
    {
        if (a1 % 4 == 1 && a2 % 4 == 0 ||
            a1 % 4 == 2 && a2 % 4 == 2 ||
            a1 % 4 == 3 && a2 % 4 == 2 ||
            a1 % 4 == 0 && a2 % 4 == 0)
        {
            return 3;
        }
        else if (a1 % 4 == 1 && a2 % 4 == 2 ||
            a1 % 4 == 2 && a2 % 4 == 0 ||
            a1 % 4 == 3 && a2 % 4 == 0 ||
            a1 % 4 == 0 && a2 % 4 == 2)
        {
            return 4;
        }
        else if (a1 % 4 == 1 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 2 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 3 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3) ||
            a1 % 4 == 0 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3))
        {
            return 1;
        }
        else
        {
            return 2;
        }
    }
    else
    {
        if (a1 % 4 == 1 && a2 % 4 == 0 ||
            a1 % 4 == 2 && a2 % 4 == 2 ||
            a1 % 4 == 3 && a2 % 4 == 2 ||
            a1 % 4 == 0 && a2 % 4 == 0)
        {
            return 2;
        }
        else if (a1 % 4 == 1 && a2 % 4 == 2 ||
            a1 % 4 == 2 && a2 % 4 == 0 ||
            a1 % 4 == 3 && a2 % 4 == 0 ||
            a1 % 4 == 0 && a2 % 4 == 2)
        {
            return 4;
        }
        else if (a1 % 4 == 1 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 2 && (a22 < 0 && a2 % 4 == 1 || a22 > 0 && a2 % 4 == 3) ||
            a1 % 4 == 3 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3) ||
            a1 % 4 == 0 && (a22 > 0 && a2 % 4 == 1 || a22 < 0 && a2 % 4 == 3))
        {
            return 3;
        }
        else
        {
            return 1;
        }
    }
}
int main(void)
{
    //ios::sync_with_stdio(false);
    int z1, z2;
    scanf("%s %lf %lf", dir, &angle, &dis);
    z1 = solve();
    scanf("%s %lf %lf", dir, &angle, &dis);
    z2 = solve();
    //printf("z1 = %d z2 = %d\n", z1, z2);
    if (z1 == z2)
    {
        printf("YES\n");
    }
    else
    {
        printf("NO\n");
    }
    return 0;
}
View Code

 

 

 

Starting a Scenic Railroad Service

Thinking:pai爷 kk

Code:kk zz

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
#define fpn() freopen("simple.in","r",stdin)
#define rd read()
using namespace std;
typedef long long ll;
const int maxn=200010;
struct node {
    int a,b;
    friend bool operator <(const node &x,const node &y) {
        return x.a<y.a;
    }
} p[maxn];
int n;
multiset<int >s;
multiset<int >::iterator it;
int ans2=0,ans1=0,a[maxn],b[maxn];

void anss2() {
    sort(p+1,p+1+n);
    s.insert(0);
    for(int i=1; i<=n; i++) {
        it=lower_bound(s.begin(),s.end(),p[i].a);
        
        if(it==s.begin()) {
            s.insert(p[i].b-1);
        } else {
            it--;
            s.erase(it);
            s.insert(p[i].b-1);
        }
    }
}
void anss3(){
    int i;
    sort(p+1,p+1+n);
    priority_queue<int>q;
    q.push(-p[1].b + 1);
    ans2 = 1;
    for(i = 2;i <= n;i++)
    {
        //printf(" %d %d\n",p[i].a,-q.top());
        int pos = q.top();
        pos = -pos;
        if(p[i].a > pos)
        {
            q.pop();
            q.push(-p[i].b + 1);
        }
        else
        {
            ans2++;
            q.push(-p[i].b + 1);
        }
    }
}
void anss1()
{
    for(int i=1;i<=n;i++)
    {
        a[p[i].a]++;
        b[p[i].b]++;
    }    
    for(int i=1;i<=100000;i++) a[i]=a[i-1]+a[i],b[i]=b[i-1]+b[i];
    for(int i=1;i<=n;i++)
    {
        ans1=max(ans1,a[p[i].b-1]-b[p[i].a]);
    }
}
int main() {
    while(cin>>n) {
        s.clear();
        for(int i=1; i<=n; i++) {
            scanf("%d%d",&p[i].a,&p[i].b);
        }
        //anss2();
        anss3();
        anss1();
        //ans2=s.size();
        printf("%d %d\n",ans1,ans2);
    }
}
View Code

 

 

反思:

  zz:理解方法慢了一些,没有理解pai爷的思路,第一遍代码写挂了,第二遍本应该ac的代码,写错了0到n-1和1到n,拖延了半个小时左右。(确定自己实现队友想出的思路的时候,理解的是正确的)

  kk:B题样例没读懂。I题不知道multiset还存在被卡时间的可能。(换个人打,另外两个人讨论)

  pai爷:处理前缀和时i从0开始,数组越界;int类型输出lld,C题样例没读懂。(看题看的慢一点,交代码的时候检查细节)

posted @ 2019-02-27 19:09  光芒万丈小太阳  阅读(516)  评论(1编辑  收藏  举报