Stacking基本思想与简单实现
Stacking模型的基本思想
假设有1000条训练集,100条测试集,那么把训练集分为5份(一般分为5份),每一份有200条。用model训练其中四份,即800条,后,预测剩下200条,同时也预测测试集100条,得到预测结果。经过5次训练,训练集正好得到200×5条结果,也就是原来训练集的数量,合为一列,即1000×1的矩阵,测试集得到100×5条,将5次预测结果取平均值,得到100×1的矩阵,第一层任务结束。接着用相同的方法,尝试另外的模型,把不同模型得到的结果按列合并,若使用3个基模型,即得到1000×3的矩阵和100×3的矩阵,将这些结果作为第二层模型的训练集和测试集,初始的训练集标签作为第二层训练集标签,投入训练,预测结果。
简单实现
import numpy as np
from sklearn.model_selection import KFold
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
# 创建一个父类,实现交叉训练的方法
class BasicModel(object):
def train(self, x_train, y_train, x_val, y_val):
pass
def predict(self, model, x_test):
pass
def mode(slef,nums):
num_dict = {}
for i in nums:
if i in num_dict:
num_dict[i] += 1
else:
num_dict[i] = 1
return max(num_dict.items(), key=lambda x: x[1])[0]
def get_oof(self, x_train, y_train, x_test, n_folds=5):
num_train, num_test = x_train.shape[0], x_test.shape[0] # 读取矩阵第一维度的长度
oof_train = np.zeros((num_train,))
oof_test =[]
oof_test_all_fold = np.zeros((num_test, n_folds))
aucs = []
KF = KFold(n_splits=n_folds, random_state=0)
for i, (train_index, val_index) in enumerate(KF.split(x_train)):
# 得到原来训练集的4/5的训练集和1/5的测试集
print('{0} fold, train {1}, val {2}'.format(i, len(train_index), len(val_index)))
x_tra, y_tra = x_train[train_index], y_train[train_index]
x_val, y_val = x_train[val_index], y_train[val_index]
model, auc = self.train(x_tra, y_tra, x_val, y_val)
# 调用自身的train方法
aucs.append(auc)
oof_train[val_index] = self.predict(model, x_val)
# 得到第二层的训练集
oof_test_all_fold[:, i] = self.predict(model, x_test)
'''
对于文本分类方面,最终得到地标签是整数,若取平均值会影响下一层判断,这里改进,求众数作为第二层模型测试集的输入
'''
#找出众数算法:
print('off_test_all_fold')
print(oof_test_all_fold)
for item in oof_test_all_fold:
mode=self.mode(item)
oof_test.append(mode)
print(oof_test)
print('all aucs {0}, average {1}'.format(aucs, np.mean(aucs)))
return oof_train, oof_test
# 多项式朴素贝叶斯
from sklearn.naive_bayes import MultinomialNB as mnb
class MNBClassifier(BasicModel):
def __init__(self):
self.params = {
'alpha': 1.0
}
def train(self, x_train, y_train, x_val, y_val):
print('train with mnb model')
model = mnb()
model.fit(x_train,y_train)
score = model.score(x_val, y_val)
return model, score
def predict(self, model, x_test):
print('test with mnb model')
# print(model.predict(x_test))
return model.predict(x_test)
# 逻辑回归
from sklearn.linear_model import LogisticRegression as lgr
class LGRClassifier(BasicModel):
def __init__(self):
self.num_rounds = 1000
self.early_stopping_rounds = 15
def train(self, x_train, y_train, x_val, y_val):
print('train with lgr model')
model=lgr()
model.fit(self.params,x_train, y_train)
score = model.score(x_val, y_val)
return model, score
def predict(self, model, x_test):
print('test with lgr model')
# print(model.predict(x_test))
return model.predict(x_test)
#支持向量机
from sklearn.svm import SVC
class SVCClassifier(BasicModel):
def train(self, x_train, y_train, x_val, y_val):
print('train with svc model')
model = SVC()
model.fit(x_train, y_train)
score = model.score(x_val, y_val)
return model, score
def predict(self, model, x_test):
print('test with svc model')
print(model.predict(x_test))
return model.predict(x_test)
def doJob(x_train, y_train, x_test, testLabel):
# 基模型处理
mnb_classifier = MNBClassifier()
mnb_oof_train, mnb_oof_test = mnb_classifier.get_oof(x_train, y_train, x_test)
lgr_classifier = LGRClassifier()
lgr_oof_train, lgr_oof_test = lgr_classifier.get_oof(x_train, y_train, x_test)
svc_classifier = SVCClassifier()
svc_oof_train, svc_oof_test = svc_classifier.get_oof(x_train, y_train, x_test)
# 合并多个模型的结果
input_train = [mnb_oof_train, lgr_oof_train,svc_oof_train]
input_test = [mnb_oof_test, lgr_oof_test,svc_oof_test]
input_test= np.array(input_test)
stacked_train = np.concatenate([f.reshape(-1, 1) for f in input_train], axis=1)
stacked_test = np.concatenate([f.reshape(-1, 1) for f in input_test], axis=1)
#引入第二层模型
from sklearn.linear_model import LinearRegression
from sklearn import metrics
import lightgbm as lgb
final_model = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20)
final_model.fit(stacked_train, y_train)
test_prediction = final_model.predict(stacked_test)
print('test_prediction','\n',test_prediction)
print(metrics.f1_score(test_prediction,testLabel,average='macro'))
参考链接:stacking基本思想与代码实现