数学物理方程之通解

波动方程 u t t = a 2 u x x u_{tt}=a^2u_{xx} utt=a2uxx

齐次波动方程分离变量得到

{ T ′ ′ a 2 T = X ′ ′ X = − λ X ′ ′ + λ X = 0 T ′ ′ + λ a 2 T = 0 \left\{\begin{array}{l}\frac{T^{\prime \prime}}{a^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda \\ X^{\prime \prime}+\lambda X=0 \\ T^{\prime \prime}+\lambda a^{2} T=0\end{array}\right. a2TT=XX=λX+λX=0T+λa2T=0

在不同边界条件下有不同的特征值和特征函数

{ λ n = n 2 π 2 l 2 X n ( x ) = sin ⁡ λ n x , u ∣ x = 0 = 0 = u ∣ x = l \left\{\left.\begin{array}{l}\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}} \\ X_{n}(x)=\sin \sqrt{\lambda_{n}} x\end{array} ,\quad \left.u\right|_{x=0}\right.=0=\left.u\right|_{x=l}\right. {λn=l2n2π2Xn(x)=sinλn x,ux=0=0=ux=l

{ λ n = [ ( 2 n + 1 ) π 2 l ] 2 X n ( x ) = sin ⁡ λ n x , u ∣ x = 0 = 0 = u x ∣ x = l \left\{\left.\begin{array}{l}\lambda_{n}=\left[\frac{(2n+1)\pi}{{2l}}\right]^{2} \\ X_{n}(x)=\sin \sqrt{\lambda_{n}} x\end{array}, \quad \left.u\right|_{x=0}\right.=0=\left.u_x\right|_{x=l}\right. {λn=[2l(2n+1)π]2Xn(x)=sinλn x,ux=0=0=uxx=l

{ λ n = n = [ ( 2 n + 1 ) π 2 l ] 2 X n ( x ) = cos ⁡ λ n x , u x ∣ x = 0 = 0 = u ∣ x = l \left\{\begin{array}{l}\lambda_{n}={n}=\left[\frac{(2n+1)\pi}{{2l}}\right]^{2} \\ X_{n}(x)=\cos \sqrt{\lambda_{n}} x\end{array}, \quad \left.u_x\right|_{x=0}\right.=0=\left.u\right|_{x=l} {λn=n=[2l(2n+1)π]2Xn(x)=cosλn x,uxx=0=0=ux=l

{ λ n = n 2 π 2 l 2 X n ( x ) = cos ⁡ λ n x , u x ∣ x = 0 = 0 = u x ∣ x = l \left\{\begin{array}{l}\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}} \\ X_{n}(x)=\cos \sqrt{\lambda_{n}} x\end{array}, \quad \left.u_x\right|_{x=0}\right.=0=\left.u_x\right|_{x=l} {λn=l2n2π2Xn(x)=cosλn x,uxx=0=0=uxx=l

∫ 0 l X n ( x ) X m ( x ) d x = l 2 \int_0^l X_n(x)X_m(x)dx=\frac{l}{2} 0lXn(x)Xm(x)dx=2l

【也可令 X n ( x ) = 2 l sin ⁡ λ n x X_{n}(x)=\sqrt{\frac{2}{l}}\sin{\sqrt{\lambda_{n}}x} Xn(x)=l2 sinλn x X n ( x ) = 2 l cos ⁡ λ n x X_{n}(x)=\sqrt{\frac{2}{l}}\cos{\sqrt{\lambda_{n}}x} Xn(x)=l2 cosλn x以满足归一化条件 ∫ 0 l X n ( x ) X m ( x ) d x = 1 \int_0^l X_n(x)X_m(x)dx=1 0lXn(x)Xm(x)dx=1,】

则波动方程的解为 u ( x , t ) = ∑ n = 1 + ∞ X n ( x ) T n ( t ) = ∑ n = 1 ∞ ( C n cos ⁡ λ n a t + D n sin ⁡ λ n a t ) X n ( x ) u(x, t)=\sum_{n=1}^{+\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty}\left(C_{n} \cos \sqrt{\lambda_{n}} a t+D_{n} \sin \sqrt{\lambda}_{n} a t\right) X_{n}(x) u(x,t)=n=1+Xn(x)Tn(t)=n=1(Cncosλn at+Dnsinλ nat)Xn(x)

其中 { C n = 2 l ∫ 0 l φ ( x ) X n ( x ) d x D n = 2 l ⋅ 1 λ n a ∫ 0 l ψ ( x ) X n ( x ) d x \left\{\begin{array}{l}C_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) X_{n}(x) d x \\ D_{n}=\frac{2}{l}\cdot\frac{1}{\sqrt{\lambda_n}a} \int_{0}^{l} \psi(x) X_{n}(x) d x\end{array}\right. {Cn=l20lφ(x)Xn(x)dxDn=l2λn a10lψ(x)Xn(x)dx φ ( x ) 、 ψ ( x ) \varphi(x)、\psi(x) φ(x)ψ(x)分别为初始条件中的初位移、初速度。

扩散方程 u t = a 2 u x x u_t=a^2u_{xx} ut=a2uxx

齐次扩散方程分离变量得到

{ T ′ a 2 T = X ′ ′ X = − λ X ′ ′ + λ X = 0 T ′ + λ a 2 T = 0 \left\{\begin{array}{l}\frac{T^{ \prime}}{a^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda \\ X^{\prime \prime}+\lambda X=0 \\ T^{ \prime}+\lambda a^{2} T=0\end{array}\right. a2TT=XX=λX+λX=0T+λa2T=0

X n ( x ) X_n(x) Xn(x)同上, T n = C n e − a 2 λ n t T_{n}=C_{n} e^{-a^{2} \lambda_{n} t} Tn=Cnea2λnt

则热传导方程的解为 u ( x , t ) = ∑ n = 1 ∞ C n e − λ n a 2 t X n u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-\lambda_{n} a^{2} t} X_{n} u(x,t)=n=1Cneλna2tXn

其中 C n = 2 l ∫ 0 l φ ( x ) X n ( x ) d x C_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) X_{n}(x) d x Cn=l20lφ(x)Xn(x)dx φ ( x ) \varphi(x) φ(x)为初始条件中的初"位移"。

矩形区域Laplace 方程

Laplace 方程/调和方程: u x x + u y y = 0 ( 0 < x < a , 0 < y < b ) u_{xx}+u_{yy}=0\quad (0<x<a,0<y<b) uxx+uyy=0(0<x<a,0<y<b)

求解步骤:

  1. 判断 x 、 y x、y xy哪个方向上有齐次边界条件

    x x x方向有齐次边界条件 u ∣ x = 0 = 0 = u ∣ x = l \left.u\right|_{x=0}=0=\left.u\right|_{x=l} ux=0=0=ux=l,则 { X ′ ′ + λ X = 0 Y ′ ′ − λ Y = 0 \left\{\begin{aligned} &X^{\prime \prime}+\lambda X=0 \\ &Y^{\prime \prime}-\lambda Y=0 \end{aligned}\right. {X+λX=0YλY=0,所以有 { λ n = n 2 π 2 l 2 X n ( x ) = sin ⁡ λ n x \left\{\begin{array}{l}\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}} \\ X_{n}(x)=\sin \sqrt{\lambda_{n}} x\end{array}\right. {λn=l2n2π2Xn(x)=sinλn x,将特征值代回 Y ′ ′ − λ Y = 0 Y^{\prime \prime}-\lambda Y=0 YλY=0,故在 y y y方向有 Y n ( y ) = C n e λ n y + D n e − λ n y n ∈ Z + Y_n(y)=C_ne^{\sqrt{\lambda_n}y}+D_n e^{-\sqrt{\lambda_n}y}\quad n\in Z^+ Yn(y)=Cneλn y+Dneλn ynZ+

  2. 写出通解 u ( x , y ) = ∑ n = 1 ∞ B n X n ( x ) Y n ( y ) u(x,y)=\sum_{n=1}^{\infty}B_nX_n(x)Y_n(y) u(x,y)=n=1BnXn(x)Yn(y)

  3. 由边界条件 u ∣ y = l = f ( x ) = ∑ n = 1 ∞ B n X n ( x ) Y n ( l ) \left.u\right|_{y=l}=f(x)=\sum_{n=1}^{\infty}B_nX_n(x)Y_n(l) uy=l=f(x)=n=1BnXn(x)Yn(l),又可以求得 B n B_n Bn,最后我们得到了 u x x + u y y = 0 u_{xx}+u_{yy}=0 uxx+uyy=0的解。

极坐标下的Laplace 方程

在极坐标下的Laplace 方程

{ Θ ′ ′ ( θ ) + λ Θ ( θ ) = 0 r 2 R ′ ′ ( r ) + r R ′ ( r ) − λ R ( r ) = 0 \left\{\begin{array}{l}\Theta^{\prime\prime}(\theta)+\lambda\Theta(\theta)=0 \\ r^{2} R^{\prime \prime}(r)+rR^{\prime}(r)-\lambda R(r)=0 \\ \end{array}\right. {Θ(θ)+λΘ(θ)=0r2R(r)+rR(r)λR(r)=0

自然边界条件下有 Θ ( θ + 2 π ) = Θ ( θ ) \Theta(\theta+2 \pi)=\Theta(\theta) Θ(θ+2π)=Θ(θ) λ n = n 2 \lambda_n=n^2 λn=n2 { Θ 0 ( θ ) = a 0 Θ n ( θ ) = a n cos ⁡ n θ + b n sin ⁡ n θ n ∈ Z \left\{\begin{array}{l}\Theta_{0}(\theta)=a_{0} \\ \Theta_{n}(\theta)=a_{n} \cos n \theta+b_{n} \sin n \theta\end{array}\right.\quad n\in Z {Θ0(θ)=a0Θn(θ)=ancosnθ+bnsinnθnZ,若有其他边界条件,例如 u ( r , 0 ) = u ( r , α ) = 0 u(r,0)=u(r,\alpha)=0 u(r,0)=u(r,α)=0,则解为 φ n ( r , θ ) = sin ⁡ n π α \varphi_n(r,\theta)=\sin{\frac{n\pi}{\alpha}} φn(r,θ)=sinαnπ,同波动方程中的 X n ( x ) X_n(x) Xn(x)

在圆内 { R 0 ( r ) = c 0 R n ( r ) = c n r n \left\{\begin{array}{l}R_{0}(r)=c_{0} \\ R_{n}(r)=c_{n} r^{n}\end{array}\right. {R0(r)=c0Rn(r)=cnrn ,【 R n ( r ) R_n(r) Rn(r)原始解 { R 0 ( r ) = c 0 + d 0 ln ⁡ r R n ( r ) = c n r λ n + d n r − λ n \left\{\begin{array}{l}R_{0}(r)=c_{0}+d_{0} \ln r \\ R_{n}(r)=c_{n} r^{\sqrt{\lambda_n}}+d_{n} r^{-\sqrt{\lambda_n}}\end{array}\right. {R0(r)=c0+d0lnrRn(r)=cnrλn +dnrλn ,自然边条下 λ n = n \sqrt{\lambda_n}=n λn =n,为了保证物理上有意义,有时 R n ( r ) R_n(r) Rn(r)需删去一部分】

则极坐标下Laplace 方程的解为 u ( r , θ ) = A 0 2 + ∑ n = 1 ∞ c n Θ ( θ ) R ( r ) ⟶ 特殊条件 A 0 2 + ∑ n = 1 ∞ ( A n cos ⁡ n θ + B n sin ⁡ n θ ) r n u(r, \theta)=\frac{A_0}{2}+\sum_{n=1}^{\infty}c_n\Theta(\theta) R(r)\stackrel{\text {特殊条件}}{\longrightarrow}\frac{A_0}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \theta+B_{n}\sin n \theta) r^{n}\right. u(r,θ)=2A0+n=1cnΘ(θ)R(r)特殊条件2A0+n=1(Ancosnθ+Bnsinnθ)rn,特殊条件指只有自然边界条件 Θ ( θ + 2 π ) = Θ ( θ ) \Theta(\theta+2 \pi)=\Theta(\theta) Θ(θ+2π)=Θ(θ)并只考虑圆内的情况 ( 0 ≤ r ≤ l ) (0\leq r\leq l) (0rl)
{ A n = 1 π l n ∫ 0 2 π f ( φ ) cos ⁡ n φ d φ , n = 0 , 1 , 2 , ⋯ B n = 1 π l n ∫ 0 2 π f ( φ ) sin ⁡ n φ d φ , n = 1 , 2 , 3 , ⋯ \left\{\begin{array}{l} A_{n}=\frac{1}{\pi l^{n}} \int_{0}^{2 \pi} f(\varphi)\cos{ n \varphi} d \varphi \quad,n=0,1,2,\cdots\\ B_{n}=\frac{1}{\pi l^{n}} \int_{0}^{2 \pi} f(\varphi) \sin{ n \varphi} d \varphi\quad ,n=1,2,3,\cdots \end{array}\right. {An=πln102πf(φ)cosnφdφ,n=0,1,2,Bn=πln102πf(φ)sinnφdφ,n=1,2,3,

求解上下限也可以取 [ − π , π ] [-\pi,\pi] [π,π],求得常数 A n A_n An B n B_n Bn可能也带有角度,求常数时用 φ \varphi φ就是为了避免与 u ( r , θ ) u(r,\theta) u(r,θ)中的角度混淆。

A n A_n An B n B_n Bn公式带入 u ( r , θ ) u(r,\theta) u(r,θ)得到泊松积分 u ( r , θ ) = 1 2 π ∫ 0 2 π f ( φ ) l 2 − r 2 l 2 − 2 l r cos ⁡ ( φ − θ ) + r 2 d φ \left.u(r,\theta\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\varphi) \frac{l^{2}-r^{2}}{l^{2}-2 l r \cos (\varphi-\theta)+r^{2}} d \varphi u(r,θ)=2π102πf(φ)l22lrcos(φθ)+r2l2r2dφ,当 f ( φ ) f(\varphi) f(φ)连续甚至分段连续时,此时泊松积分为圆的狄利克雷问题的解。【狄利克雷问题指只有边界条件而无需初始条件的问题】

在拉普拉斯变换中需注意 R n ( r ) R_n(r) Rn(r)的适用范围应当满足物理规律。以温度场为例,圆内温度不可能无限高,则求解圆内问题应当舍去 d n r − n d_{n} r^{-n} dnrn项,讨论圆外的问题一般则需舍去 c n r n c_{n} r^{n} cnrn项,讨论圆环问题则无需舍去。但也有特例,例如匀强电场中无限远处电势可以为无穷,不需舍去任何一项。

以上都只是二维系统下常见的数理方程的分离变量法,它们还不足以解决更复杂的问题,因此我们还将学习一种更特别的函数,这类特殊函数也是在处理数学物理方程的过程中遇到的,首先,我们将通过在曲线坐标系中分离变量引入这几类特殊函数。

下一章节:正交曲线坐标系中的分离变量

更多相关内容传送门:数学物理方法专栏阅读指南

posted @   Moster2469  阅读(377)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
点击右上角即可分享
微信分享提示