树状树状
树状数组基础
树状数组是一个查询和修改复杂度都为log(n)的数据结构。主要用于数组的单点修改&&区间求和.
另外一个拥有类似功能的是线段树.
具体区别和联系如下:
1.两者在复杂度上同级, 但是树状数组的常数明显优于线段树, 其编程复杂度也远小于线段树.
2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决.
3.树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树。
上面出现了一个新名词:lowbit.其实lowbit(x)就是求x最低位的1;
下面加图进行解释
对于一般的二叉树,我们是这样画的
把位置稍微移动一下,便是树状数组的画法
上图其实是求和之后的数组,原数组和求和数组的对照关系如下,其中a数组是原数组,c数组是求和后的数组:
C[i]代表 子树的叶子结点的权值之和
如图可以知道
C[1]=A[1];
C[2]=A[1]+A[2];
C[3]=A[3];
C[4]=A[1]+A[2]+A[3]+A[4];
C[5]=A[5];
C[6]=A[5]+A[6];
C[7]=A[7];
C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];
再将其转化为二进制看一下:
C[1] = C[0001] = A[1];
C[2] = C[0010] = A[1]+A[2];
C[3] = C[0011] = A[3];
C[4] = C[0100] = A[1]+A[2]+A[3]+A[4];
C[5] = C[0101] = A[5];
C[6] = C[0110] = A[5]+A[6];
C[7] = C[0111] = A[7];
C[8] = C[1000] = A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];
对照式子可以发现 C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i]; (k为i的二进制中从最低位到高位连续零的长度)例如i=8(1000)时,k=3;
C[8] = A[8-2^3+1]+A[8-2^3+2]+......+A[8]
即为上面列出的式子
现在我们返回到lowbit中来
其实不难看出lowbit(i)便是上面的2^k
因为2^k后面一定有k个0
比如说2^5==>100000
正好是i最低位的1加上后缀0所得的值
开篇就说了,lowbit(x)是取出x的最低位1;具体操作为
int lowbit(x){return x&(-x);}
极致简短!!!!现在我们来理解一下这行代码:
我们知道,对于一个数的负数就等于对这个数取反+1
以二进制数11010为例:11010的补码为00101,加1后为00110,两者相与便是最低位的1
其实很好理解,补码和原码必然相反,所以原码有0的部位补码全是1,补码再+1之后由于进位那么最末尾的1和原码
最右边的1一定是同一个位置(当遇到第一个1的时候补码此位为0,由于前面会进一位,所以此位会变为1)
所以我们只需要进行a&(-a)就可以取出最低位的1了
会了lowbit,我们就可以进行区间查询和单点更新了!!!
--------------------------------------------------------------------------------------------
单点更新:
继续看开始给出的图
此时如果我们要更改A[1]
则有以下需要进行同步更新
1(001) C[1]+=A[1]
lowbit(1)=001 1+lowbit(1)=2(010) C[2]+=A[1]
lowbit(2)=010 2+lowbit(2)=4(100) C[4]+=A[1]
lowbit(4)=100 4+lowbit(4)=8(1000) C[8]+=A[1]
换成代码就是:
void update(int x,int y,int n){ for(int i=x;i<=n;i+=lowbit(i)) //x为更新的位置,y为更新后的数,n为数组最大值 c[i] += y; }
--------------------------------------------------------------------------------------------
区间查询:
举个例子 i=5
C[4]=A[1]+A[2]+A[3]+A[4];
C[5]=A[5];
可以推出: sum(i = 5) ==> C[4]+C[5];
序号写为二进制: sum(101)=C[(100)]+C[(101)];
第一次101,减去最低位的1就是100;
其实也就是单点更新的逆操作
代码如下:
int getsum(int x){ int ans = 0; for(int i=x;i;i-=lowbit(i)) ans += c[i]; return ans; }
高级操作
求逆序对
操作
对于数组a,我们将其离散化处理为b[].区间查询与单点修改代码如下
void update(int p) { while(p<=n) { a[p] ++; p+=lowbit(p); } } int getsum(int p) { int res = 0; while(p) res += a[p],p -= lowbit(p); return res; }
a的逆序对个数为:
for(int i=1;i<=n;i++){ update(b[i]+1); res += i-getsum(b[i]+1); }