堆(二叉堆)

堆和二叉堆的介绍

堆的定义

堆(heap),这里所说的堆是数据结构中的堆,而不是内存模型中的堆。堆通常是一个可以被看做一棵树,它满足下列性质:
[性质一] 堆中任意节点的值总是不大于(不小于)其子节点的值;
[性质二] 堆总是一棵完全树。
将任意节点不大于其子节点的堆叫做最小堆或小根堆,而将任意节点不小于其子节点的堆叫做最大堆或大根堆。常见的堆有二叉堆、左倾堆、斜堆、二项堆、斐波那契堆等等。

 

二叉堆的定义

二叉堆是完全二元树或者是近似完全二元树,它分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下:

 

二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。

假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:

(01) 索引为i的左孩子的索引是 (2*i+1);

(02) 索引为i的右孩子的索引是 (2*i+2);

(03) 索引为i的父结点的索引是 floor((i-1)/2);

 

假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:

(01) 索引为i的左孩子的索引是 (2*i);

(02) 索引为i的右孩子的索引是 (2*i+1);

(03) 索引为i的父结点的索引是 floor(i/2);

 

二叉堆的图文解析

在前面,我们已经了解到:"最大堆"和"最小堆"是对称关系。这也意味着,了解其中之一即可。本节的图文解析是以"最大堆"来进行介绍的。

二叉堆的核心是"添加节点"和"删除节点",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。

 

1. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:

如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。

2. 删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。

注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的子节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!

 
 
文章内容摘抄于:
二叉堆(一)之 图文解析 和 C语言的实现 - 如果天空不死 - 博客园
posted @ 2019-04-29 09:24  莫瑞  阅读(1378)  评论(0编辑  收藏  举报