ALGO-17 乘积最大

ALGO-17 乘积最大

题目

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰 90 周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友 XZ 也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

设有一个长度为 N 的数字串,要求选手使用 K 个乘号将它分成 K+1 个部分,找出一种分法,使得这 K+1 个部分的乘积能够为最大。

同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:

有一个数字串:312, 当 N=3,K=1 时会有以下两种分法:

\(3*12=36\)
\(31*2=62\)

这时,符合题目要求的结果是:\(31*2=62\)

现在,请你帮助你的好朋友 XZ 设计一个程序,求得正确的答案。

输入格式

程序的输入共有两行:
  第一行共有 2 个自然数 N,K(6≤N≤40,1≤K≤6)
  第二行是一个长度为 N 的数字串。

输出格式

输出所求得的最大乘积(一个自然数)。

样例输入

4 2
1231

样例输出

62

题解

思路

动态规划,dp[i][j] 表示为 i 个数字,使用 j 个乘号的最大乘积
公式:\(dp[i][j] = max(dp[i][j], dp[m][j - 1] * getNum(m + 1, i))\) 其中 \((j\le m<i)\)

  • \(m>=j\) 因为乘号要比数字少
  • \(m<i\) 因为剩下的数字至少要有一位

例如
样例的 1231 的dp[][]

\[\begin{matrix} 0&0&0\\ 1&0&0\\ 12&2&0\\ 123&36&6\\ 1231&372&62\\ \end{matrix} \]

dp[4][2] 的时候是把 2 和 36 的

代码

import java.util.Scanner;
import java.util.Arrays;

public class ALGO_17 {
    private static int[][] dp;// dp[i][j]表示为i个数字,使用j个乘号的最大乘积
    private static int[] num;// num是输入的数字串

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int k = scanner.nextInt();
        char[] c = scanner.next().toCharArray();
        scanner.close();
        num = char_int(c);
        maximum(n, k);
        System.out.println(dp[n][k]);
    }

    /**
     * 将char[] 型的数字转换为 int[] 型的数字, 方便运算
     * @param {char[]} c
     * @return {int[]}
     */
    private static int[] char_int(char[] c) {
        int[] num = new int[c.length];
        for (int i = 0; i < c.length; i++) {
            num[i] = c[i] - '0';
        }
        return num;
    }

    private static void maximum(int n, int k) {
        dp = new int[n + 1][k + 1];
        for (int i = 1; i <= n; i++)
            dp[i][0] = getNum(1, i);
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= Math.min(i - 1, k); j++) {
                for (int m = j; m < i; m++) {
                    // 从j开始是因为上三角都是0(乘号个数 必须 比 位数 小)
                    // 到i-1结束时因为剩下的数字至少要有一位
                    dp[i][j] = Math.max(dp[i][j], dp[m][j - 1] * getNum(m + 1, i));
                }
            }
        }
    }

    /**
     * 得到第i位到第j位组合的整数,左闭右闭
     * @param {int} i 开始
     * @param {int} j 结束
     * @return {int} 组合后的整数
     */
    private static int getNum(int i, int j) {
        i--;
        j--;
        if (i > j)
            return 0;
        int res = 0;
        while (i <= j) {
            res = 10 * res + num[i++];
        }
        return res;
    }
}
posted @ 2022-03-26 14:48  morning-start  阅读(36)  评论(0编辑  收藏  举报