| import torch |
| from torch import nn |
| from d2l import torch as d2l |
| |
| batch_size = 256 |
| |
| |
| train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) |
| |
| |
| net = nn.Sequential(nn.Flatten(), |
| nn.Linear(784, 256), |
| nn.ReLU(), |
| nn.Linear(256, 10)) |
| |
| def init_weights(m): |
| if isinstance(m, nn.Linear): |
| nn.init.normal_(m.weight, 0, 0.01) |
| nn.init.zeros_(m.bias) |
| |
| net.apply(init_weights) |
| |
| |
| loss = nn.CrossEntropyLoss(reduction='none') |
| optimizer = torch.optim.SGD(net.parameters(), lr=0.01) |
| |
| d2l.train_ch3(net, train_iter, test_iter, loss, 10, optimizer) |
| |
| |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)