摘要:
将 offline HIM 应用到 PbRL,① 用离线轨迹训练 a=π(s,z) ,② 训练最优 hindsight z* 靠近 z+ 远离 z-。 阅读全文
摘要:
将 offline 训练轨迹中,当前时刻之后发生的事 作为 hindsight,从而训练出 想要达到当前 hindsight 的 action。 阅读全文
摘要:
① sequence: {s, a, R, s, ...};② 在 s 的 decode 结果上加 MLP 预测 action;③ 给定 return-to-go 作为某种 hindsight。 阅读全文