贴个不知真假的 representation learning for RL 综述


(Microsoft Bing Copilot)

Act as a reinforcement learning expert. Please do a review for representation learning in RL. Should focus on how to map a trajectory to a latent.

Representation learning in Reinforcement Learning (RL) is a critical area of study. It focuses on how an agent can learn to represent its environment in a way that simplifies the policy or value function approximation problem. Here’s a brief review focusing on mapping a trajectory to a latent representation:
强化学习 (RL) 中的表征学习是一个关键的研究领域。它侧重于代理如何学习以简化策略或值函数近似问题的方式表示其环境。下面是一个简短的回顾,重点是将轨迹映射到潜在表示:

Trajectory-based Representation Learning
基于轨迹的表征学习

In many RL problems, especially in high-dimensional ones, raw observations from the environment may not be the most effective way to represent the state. This is where trajectory-based representation learning comes in. It aims to map a sequence of actions and observations, i.e., a trajectory, to a latent space.
在许多强化学习问题中,特别是在高维问题中,来自环境的原始观测值可能不是表示状态的最有效方法。这就是基于轨迹的表征学习的用武之地。它旨在将一系列动作和观察(即轨迹)映射到潜在空间。

The key idea is to learn a representation that captures the essential information over a trajectory that is relevant for decision-making, while discarding irrelevant details. This is typically achieved through some form of dimensionality reduction or feature learning.
关键思想是学习一种表示,该表示在与决策相关的轨迹上捕获基本信息,同时丢弃不相关的细节。这通常是通过某种形式的降维或特征学习来实现的。

Methods 方法

  1. Auto-encoders: Auto-encoders can be used to learn a compressed representation of a trajectory. The encoder maps the trajectory to a lower-dimensional latent space, and the decoder reconstructs the trajectory from this latent representation. The aim is to minimize the reconstruction error.
    自动编码器:自动编码器可用于学习轨迹的压缩表示。编码器将轨迹映射到低维潜在空间,解码器从该潜在表示中重建轨迹。目的是将重建误差降至最低。
  2. Variational methods: Variational methods like Variational Auto-encoders (VAEs) or Gaussian Processes (GPs) can be used to learn a probabilistic mapping from trajectories to a latent space. These methods provide a measure of uncertainty along with the learned representation.
    变分方法:变分自动编码器 (VAE) 或高斯过程 (GP) 等变分方法可用于学习从轨迹到潜在空间的概率映射。这些方法提供了不确定性的度量以及学习的表示。
  3. Inverse Reinforcement Learning (IRL): IRL methods can be used to learn a reward function that explains the trajectories. This reward function can serve as a latent representation of the trajectory.
    逆强化学习 (IRL):IRL 方法可用于学习解释轨迹的奖励函数。这个奖励函数可以作为轨迹的潜在表示。
  4. Successor Representations (SR): SR provides a way to represent the state such that the value function can be easily computed. It can be seen as a mapping from a trajectory to a latent space where the value function is linear.
    后继表示 (SR):SR 提供了一种表示状态的方法,以便可以轻松计算值函数。它可以看作是从轨迹到潜在空间的映射,其中值函数是线性的。

Challenges and Future Directions
挑战与未来方向

While trajectory-based representation learning has shown promise, there are several challenges to be addressed. These include handling partial observability, scaling to large environments, and dealing with non-stationarity. Furthermore, how to best utilize these learned representations in an RL algorithm is still an open question.
虽然基于轨迹的表征学习已经显示出前景,但仍有一些挑战需要解决。其中包括处理部分可观测性、扩展到大型环境以及处理非平稳性。此外,如何在RL算法中最好地利用这些学习到的表示仍然是一个悬而未决的问题。

In conclusion, trajectory-based representation learning provides a powerful tool for RL. By mapping trajectories to a latent space, it can potentially simplify the policy or value function approximation problem, making it easier for the RL agent to learn. However, more research is needed to fully realize its potential and address the existing challenges.
总之,基于轨迹的表征学习为强化学习提供了一个强大的工具。通过将轨迹映射到潜在空间,它可以潜在地简化策略或值函数近似问题,使 RL 代理更容易学习。然而,需要更多的研究来充分发挥其潜力并应对现有的挑战。

Please provide several articles for the above 4 methods. I'm very curious about these methods!

Sure, here are some articles for each of the methods:
当然,这里有一些关于每种方法的文章:

Auto-encoders in Reinforcement Learning:
强化学习中的自动编码器:

  1. “The Dreaming Variational Autoencoder for Reinforcement Learning Environments” by Per-Arne Andersen, Morten Goodwin, Ole-Christoffer Granmo.
  2. “Reinforcement Learning on Robot with Variational Auto-Encoder” by Yiwen Chen, Chenguang Yang & Ying Feng.
  3. “On the use of Deep Autoencoders for Efficient Reinforcement Learning” on arXiv.

Variational Methods in Reinforcement Learning:
强化学习中的变分方法:

  1. “Variational methods for Reinforcement Learning” by Thomas Furmston, David Barber.
    “强化学习的变分方法”,作者:Thomas Furmston,David Barber。
  2. “Deep Variational Reinforcement Learning for POMDPs” on arXiv5.
    arXiv 5 上的“Deep Variational Reinforcement Learning for POMDPs ”。
  3. “VIREL: A Variational Inference Framework for Reinforcement Learning” on arXiv.

Inverse Reinforcement Learning:
逆强化学习:

  1. “A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress” by Saurabh Arora, Prashant Doshi.
    “逆强化学习的调查:挑战、方法和进展”,作者:Saurabh Arora,Prashant Doshi 。
  2. “Learning from humans: what is inverse reinforcement learning?” on The Gradient.
    “向人类学习:什么是逆向强化学习?”
  3. “Inverse Reinforcement Learning” by Stanford University.
    斯坦福大学的“逆强化学习”。

Successor Representations in Reinforcement Learning:
强化学习中的后继表示:

  1. “Deep Successor Reinforcement Learning” by Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, Samuel J. Gershman.
  2. “Successor Feature Representations” on arXiv.
    arXiv 上的“后继特征表示”。
  3. “The successor representation in human reinforcement learning” on Nature Human Behaviour.
    “人类强化学习中的后继表征”,发表在《自然人类行为》上。

These articles should provide you with a deeper understanding of each method. Happy reading! 😊
这些文章应该让你对每种方法有更深入的了解。祝您阅读愉快!😊



posted @ 2024-02-29 16:10  MoonOut  阅读(40)  评论(1编辑  收藏  举报