cs 保研经验贴 | 综合面试题库


绝大部分夏令营都需要面试:如果幸运的话,稍微问几个问题就结束了;不幸的话,可能要抓住你做项目、读论文、复现、做 pre 等等。

这篇博客适用于幸运的情况:绝大部分学校的面试题库,都是彼此重合的,并且一年年的没什么变化。因此,只要准备一下常见的高频问题,就足以应付这种面试了。



同站相关博客:


夏令营原题:数学

线代

  • 【北航】矩阵的范数:

    • 引入范数的目的是为了度量。
    • 正定(零矩阵范数=0),齐次(|λA|=λ|A|),三角不等式(两边范数之和 ≥ 第三边范数)。
    • 对于矩阵范数,还有:||AB|| ≤ |A|·|B|
  • 【北航】线性无关是什么:

    • 一组向量里面,没有一个可以被其他人联合表示。
    • 只有当 k全=0 时,Σkx=0 才成立。
    • 广义 组成的四边形 六面体 超几何体 体积是否不为零。
    • 线性组合:多项式,全是一次项(无向量相乘 无常数)。
  • 【北航】矩阵的行列式:

    • 广义平行四边形的体积。
    • 行列式为零的矩阵,不可逆(把线性无关的向量,映射成线性相关的了,丢失信息 则不可逆);行列式不为零的矩阵,可逆。
  • 【北航】矩阵的迹:矩阵主对角线元素的和

  • 【ALL】矩阵的秩是什么,有什么物理意义

    • 矩阵中线性无关向量的个数。
    • 取子矩阵(方阵)的行列式,最大子矩阵维度 使得行列式 ≠ 0。
    • 物理意义:方程有几个解。
    • 秩:变换后,虽然可能没法完全不丢信息,但至少还能给你保住几个面。
    • r(AB) <= r(A), r(A) + r(B) - n <= r(AB)
    • 矩阵可逆 <=> 矩阵满秩。
  • 【北航】Ax=b有解的条件:

    • A 的秩 = 分块矩阵 (A,b) 的秩
    • 如果 b 存在于 A 的列向量的线性空间中,则有解,否则无解;
    • 如果 A 的列均是线性无关的(列满秩),那么存在唯一解;非列满秩则多解;
    • Ax=0 如果列满秩,则只有零解。
  • 【北航】【复旦】矩阵的特征值是什么,有什么物理意义,应用

    • Ax=λx。算子的本征值(投影不变,有点像傅里叶变换 卷积指数信号还是指数信号)。
    • —个变换矩阵的所有特征向量,都是正交的,组成了这个变换矩阵的一组基。
    • 矩阵的特征值分解:\(A=Q\Sigma Q^{-1}\),Σ是对角阵,Q是特征列向量组成的矩阵。
    • 怎么求:
      • 写出方程丨λE-A丨=0,其中I为与A同阶的单位阵,λ为代求特征值
      • 将n阶行列式变形化简,得到关于λ的n次方程
      • 解此n次方程,即可求得A的特征值
    • 应用:PCA 主成分分析。
  • 【自动化所】【北航】线性空间是什么,m维线性空间的定义

    • m个相互正交的向量,做加法和数乘,可以组成线性空间。
    • 向量空间:V 为 n 维向量的集合,不为空集,对加法和数乘封闭。
    • 线性空间:再满足
      • 向量加法 交换律 结合律,数乘结合律,加法和数乘的分配律。
      • 向量加法的零元素 向量加法可逆(负数),数乘的 1 元素。
  • 【软件所】转置矩阵的几何意义

    • 二维图像 关于某个点对称后(关于 45° 轴翻转?)。
  • 【北航】正交矩阵:

    • \(AA^T=A^TA=E\)\(A^T\)\(A^{-1}\) 也是正交矩阵,行向量 列向量是单位向量 且两两正交,|A|=1 或 -1(显然)。
    • 左乘正交矩阵造成的空间变换,是用一个新空间代替原有空间,即用另一组正交基描述被变换的向量,不改变原向量的长度和空间位置。
  • 【北航】矩阵如何求逆:

    • 待定系数法,初等变换法:img
  • 【北航】什么时候 AB = BA:

    • P−1AP,P−1BP 都是对角阵(同一个P),或者A=B。

概率论

  • 【北航】【北大】贝叶斯公式是什么,有什么应用

    • 已知 B 求 A 的概率,等于 AB 都发生概率 / B 发生的概率。
    • 已知事情发生了,求 xx 事情是因的概率。也就是似然?
  • 【北航】期望和方差的定义:

    • 在这里插入图片描述
  • 【北航】全概率公式:

    • 事件 A1,A2,…构成一个完备事件组,才能用全概率公式。
  • 【复旦】【22年复旦又问到了!】最大似然估计

    • 概率:结果没有产生之前,根据环境参数,预测某件事情发生的可能性;
    • 似然:在确定的结果下,去推测产生这个结果的可能环境参数。
    • L(θ|x) = P(x|θ)。
  • 【复旦】【北航】解释独立性、相关性、互斥性;

    • 独立 互不影响 条件概率=概率,互斥 不能同时发生。
    • 条件独立:P(AB∣C)=P(A∣C)P(B∣C)
    • 协方差:两随机变量 线性相关性的强度,\(Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}\),相关系数 归一化(不受变量尺度影响)\(Cov(X,Y)/\sqrt{D(X)}\sqrt{D(Y)}\)
    • 独立一定不(线性)相关,不相关不一定独立。服从二维正态分布,不相关 <=> 独立。举例,Y=X²。
  • 【北大】【北航】大数定律,中心极限定理:

    • 大数定律:当样本数据无限大时,样本均值趋于总体均值。事件 A 发生的频率逼近于它的概率。切比雪夫(样本均值→总体均值),伯努利(频率→概率),辛钦(样本均值→期望)。
    • 中心极限定理:当样本量 n 逐渐趋于无穷大时,n 个抽样样本的均值的频数,逐渐趋于正态分布。原总体的分布不做任何要求。
    • 中心极限定理 应用:蒙特卡罗法。求随机变量之和Sn落在某区间的概率。
  • 【msra】熵是什么

  • 【北航】【复旦】高斯分布(正态分布)是什么

    • 若随机变量 X 服从一个数学期望为 μ、方差为 σ² 的正态分布,记为 N(μ, σ²)。
    • 概率密度函数:
    • 期望值μ决定了其位置,标准差σ决定分布的跨度。μ = 0, σ = 1:标准正态分布。
    • 正态分布能积分出来吗:不太能,最多只有这个 [公式]
    • 应用场景:近似某些分布(中心极限定理),把成绩转换为正态分布(高考赋分)。
  • 【北航】概率密度函数 是什么:

    • 连续型随机变量,落在一段区间的概率 / 区间长度 取极限。
  • 【北航】二项分布,超几何分布。

    • 二项分布:n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。n 次试验中事件 A 恰好发生 k 次,这个离散概率分布。 \(P\{X=k\}=C_n^kp^k(1-p)^{n-k}, C_n^k=\frac{n!}{k!(n-k)!}\)
    • 超几何分布:它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出 该指定种类 的物件的次数(不放回)。 img
  • 【北航】泊松分布:

    • 泊松分布:img ,参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
    • 举例:医院平均每小时出生6个新生儿,想知道在起飞前一小时 是否有机会见到10个或更多的婴儿。预测这段时间来的客户数量。
    • 当二项分布 n 很大 p 很小时,泊松分布可作为二项分布的近似,其中 λ 为 np。

高数

  • 【北航】【自动化所】可微与可导有什么区别,一维 二维 条件,与连续的关系。

    • 可微:若自变量在点x的改变量Δx,与函数相应的改变量Δy,有关系Δy=A·Δx+ο(Δx),其中A与Δx无关。那么 A 是微分。
    • 可微:偏导数 在邻域 存在且连续。
    • 可导:lim Δy/Δx =A 存在,那么 A 是导数。两侧可导则连续。
    • 连续:一维:可微<=>可导=>连续=>可积,多维:可微=>偏导数存在=>连续=>可积。
  • 【自动化所】【北航】【复旦】连续和一致连续,收敛和一致收敛

    • 连续 函数,收敛 级数。
    • 连续:某点连续:极限值=函数值(不会跳变),函数连续:每个点都连续。
    • 一致连续:对区间 I 上任意两点 x1 x2,当 |x1-x2|<δ 时,|f(x1)-f(x2)|<ε。
    • 一致连续→连续,1/x 不一致连续。考察均匀程度,不允许难以接受的连续突变(特别陡)。闭区间上,连续<=>一致连续。
    • 收敛:对特定的x,级数项数→无穷时,极限值=某个函数(x)。[公式]
    • 一致收敛:公式
    • 收敛:在极限函数 [公式] 的任意小邻域内(该邻域对 x 定制)(可以想象成一条加宽的带子),对于函数列 [公式][公式] 项之后的函数图像都会全部落在这条带子里面。一致收敛:对所有 x,找到一条通用的带子。
    • 收敛→一致收敛,fn(x)=x^n (0, 1) 上收敛到 0,但不一致收敛。不允许 |fn(x)-f(x)| 难以接受的大。闭区间上,收敛<=>一致收敛。
    • 一致收敛后,对和函数求积分 可以变成 逐项求积分求导。
  • 【自动化所】【北航】柯西中值定理,拉格朗日中值定理

    • lagrange:闭区间连续 开区间可导,切线割线斜率。
    • cauchy:闭区间连续 开区间可导,g' ≠ 0,割线相比 = 导数相比。
  • 【自动化所】牛顿迭代法

  • 【自动化所】【北航】最小二乘法

  • 【复旦】【北航】极限的定义:

    • epsilon-N 定义,epsilon-δ 定义。趋于∞:M(大数)。
  • 【北航】边缘分布:

    • P(x)=Σ_y P(x,y)=Σ_y P(x|y)P(y)
  • 【复旦】空间闭环曲线 怎么求面积或体积;

    • green gauss stokes。
  • 【计算所】【北航】如何计算Sin 1

    • 如果是 sin 1° / sin 1/180Π,直接泰勒级数。
    • 如果是 sin 1,泰勒级数可能不太行(1 的多少次方还是1)(并不,从网上查的是ok的),可能要 sin1=2cos0.5sin0.5,再泰勒展开?
  • 【北航】极大值什么时候等于最大值

    • 导数单调递减,即二阶导数<0,上凸函数,肯定 ok。
    • 考察最大的极大值和端点值的关系。(端点值>极大值,且开区间,则无限逼近端点,函数无最大值)

离散数学

  • 【北航】握手定理:

    • 有n个人握手,每人握手x次,握手总次数为 S= nx/2。
  • 【北航】命题逻辑的连接词:

    • 一元连接词:非¬
    • 二元连接词:合取 ∧,析取 ∨,异或 ⊕,蕴涵 →,等价 <->。
  • 【北航】单射(我和你各抢各的 不抢一个人),满射(所有人都被抢了),双射(一一对应)。

  • 【北航】幂集,笛卡儿积:

    • 幂集:原集合中所有的子集(包括全集和空集)构成的集合,集合的集合 N → 2^N。
    • 笛卡尔积:第一个对象是X的成员,第二个对象是Y的成员,所有可能有序对的集合。
  • 【北航】偏序关系:

    • 非严格偏序或自反偏序:

      • 给定集合S,“≤”是S上的二元关系,满足:
      • 自反性:∀a∈S,有a≤a;
      • 反对称性:∀a,b∈S,a≤b且b≤a,则a=b;
      • 传递性:∀a,b,c∈S,a≤b且b≤c,则a≤c;则
    • 严格偏序,反自反偏序:

      • 反自反性:∀a∈S,有a≮a;
      • 非对称性:∀a,b∈S,a<b ⇒ b≮a;
      • 传递性:∀a,b,c∈S,a<b且b<c,则a<c;
  • 【北航】欧拉回路,哈密顿回路。

    • 哈密顿回路:经过每个点一次并且回到起点(旅行商问题),NP-complete 也是 NP hard。
    • 欧拉回路:经过每一条边并回到起点,一笔画。
      • 图是连通的,没有孤立节点,(欧拉通路)对于无向图,奇数度的顶点为2个(起点终点),剩下都是偶数度。如果没有奇数度顶点,可以有欧拉回路。
  • 【北航】等价关系:

    • 设 R 是集合 A 的二元关系,R 自反 对称 传递 → 等价关系。
    • 自反性:∀a∈S,有 aRa;
    • 对称性:在集合R中,若 aRb 则 bRa。
    • 传递性:∀a,b,c∈S,aRb 且 bRc,则 aRc;
  • 【北航】图 度数和边的关系

    • 有向图:入度 出度。边数=Σ入度=Σ出度
    • 无向图:边数=0.5 Σ度
  • 【北航】集合的划分,集合的基:

    • 划分可能就是所谓完备事件集?互不相交,并集=原集合。基貌似是集合元素个数。
  • 【北航】群 环 域:二元运算

    • 群:加法,封闭性 结合性 单位元 反元素。
    • 环:在交换群的基础上,添加二元运算乘法:加法单位元是乘法零元素,反元素 (-a)b = a(-b) = -(ab),结合律(半群),关于加法满足分配率。
    • 域:在交换环的基础上,增加二元运算除法,具体没有学。

夏令营原题:专业课

强意向:自动化系。自动化所,计算所,人大高瓴,北航,上交,复旦,天大。

弱意向:软件所,北理工,南开。

无意向:清华其他地方,北大,南大。

数据结构

  • 【复旦】快排时间复杂度(最优最差和平均),证明
  • 【高瓴】【2022年高瓴又考到了!】KMP 字符串匹配
  • 【北航】栈算表达式,前缀中缀后缀表达式
    • 中 → 后:两个栈。
    • 计算后缀表达式:一个栈。
    • 计算前缀表达式:从右到左(反向)扫描,数字压栈,运算符 弹栈*2 计算。
  • 【北大】【复旦】【北航】常见的排序算法,复杂度
    • 稳定 / 非稳定排序:两个相等的数 排序前后 相对位置不变。
    • 插入排序(希尔排序):
      • 每一趟将一个待排序记录,按其关键字的大小插入到已排好序的一组记录的适当位置上,直到所有待排序记录全部插入为止。稳定,O(n),O(1)。
      • 把记录按下标增量(模)分组,对每组进行直接插入排序,每次排序后减小增量,当增量减至 1 时排序完毕。不稳定,不知道(有个实验结论),O(1)。
    • 冒泡排序:
      • 比较相邻的元素,如果第一个比第二个大就进行交换,对每一对相邻元素做同样的工作。稳定,O(n),O(1)。
    • 选择排序:
      • 每次在未排序序列中找到最小元素,和未排序序列的第一个元素交换位置,再在剩余未排序序列中重复该操作,直到所有元素排序完毕。不稳定,O(n),O(1)。
    • 桶排序:
      • 将数组分到有限数量的桶里(比如按照十进制最高位,分到10个桶里),每个桶分别排序(可能使用别的排序算法,也可能递归桶排序),然后把排序好的桶连接起来。
      • 稳定。桶数量 = 数据量时,O(N),O(N)。桶数量 = 2,完全递归桶排序,O(NlogN),O(N)。
    • 归并排序:
      • 将待排序序列分成两部分,先对两部分 分别递归排序,然后进行合并。稳定,O(nlogn),O(n)。
    • 堆排序:
      • 堆是一种完全二叉树,最大值堆:子节点均小于父节点,最小值堆:子节点均大于父节点。
      • 插入:放在完全二叉树最后一点,一直往上升。
      • 删除:取出根节点,最后一点升顶,往下降。
      • 不稳定,O(nlogn),O(1)(树状数组)。
    • 快速排序:
      • 随机选择一个基准元素,通过一趟遍历 将要排序的数据分割成两部分,一部分全部小于等于基准元素,一部分全部大于等于基准元素,继续对两部分递归快排。不稳定,O(nlogn),O(1)。
      • 最优:每一次选基准元素都恰好选到中位数,⼆叉树的层数(logn)即为递归需要进⾏的次数,并且每轮递归结束时,都将⼆叉树遍历了⼀遍(n),O(nlogn)。
      • 最差:数组完全倒序,每次都选到最大的作基准,O(n^2)。
      • 平均:
      • 在这里插入图片描述
      • 然后错位相减:nA(n) - (n-1)A(n-1)
      • 在这里插入图片描述
  • 【复旦】用栈实现 Hanoi:
    • 实现:应该指盘子堆叠 LIFO。
    • Hanoi:将 A 上面的 n-1 个盘子移到 C 上,即 A(n-1) 次;将第 n 个盘子移到 B 上,1 次;将 B 上面的 n-1 个盘子移到C上,即 A(n-1) 次。A(n) = 2A(n-1) + 1。
  • 【北航】贪心算法得不到最优解的例子
  • 【复旦】最短路径有几种算法,复杂度
    • Floyd:求所有点到所有点的最短路径。
      • for 源点 i,for 终点 j,for 松弛点 k,d[i][j]=min(d[i][j], d[i][k]+d[k][j]),O(n^3)。
    • Dijkstra:求原点到所有点的最短路径,正边权图。
      • 选择目前仍未确定最短路的 距离最短顶点 k(堆优化),确定 k 和 k 的前向,别的顶点对 k 松弛一遍 d[j]=min(d[j], d[k]+edge[k][j]),O(ElogV),E:对每条边都松弛一遍,logV:入堆出堆。
  • 【复旦】最小生成树(MST)是什么,怎么求。
    • 一个联通子图,包含所有结点,边数 = n-1,边权之和最小。存在多个。
    • prim(点 稠密图):每次选择 与连通块之间的边权值最小的顶点(堆),直到已选 n 个顶点。维护 {边权, 边顶点1, 顶点2} 的结构体,用堆来存,每次 logV 选最小顶点,选完更新其他顶点(旧信息出堆,新信息入堆,Σ边数×logV,常数为最大度),O((E+V)logV)。
    • kruskal(边 稀疏图):每次选择 两顶点未连通(并查集)权值最小的边,直到已选 n-1 条边。边按权值排序 然后依次选边,O(V+ElogE) 排序 。
  • 【北航】从海量数据里找到一个相对大的数
    • 分块,分成1000块,找每块里最大的 K 个数,再把这 1000K 个数进行排序。
  • 线性表:数组,链表,栈,队列。
  • 二叉树:满二叉树(每一层都最大节点数量),完全二叉树(一行行排),二叉搜索树,前中后序 层序 遍历。
  • AVL 树(二叉平衡树):改进的搜索二叉树。
    • 每一个结点的左右分支绝对高度不超过1,(1为平衡因子)。
    • 增删后,通过旋转的方式重新恢复平衡。
  • 图的邻接表:通过链表存储图的连接关系。本顶点存在表头,相邻顶点依次以单向链表形式存在后面,V 个链表。适合稀疏图。
  • DFS / BFS:
    • DFS:将图中每个顶点的访问标志设为 false,之后搜索图中每个顶点,如果未被访问,则以该顶点 V 为起始点出发,访问 V,依次递归 DFS 访问 V 的各个未被访问邻接点,直至图中所有和 V 连通的顶点都被访问到。(栈)
    • BFS:从图中某顶点 V 出发,访问此顶点后,依次访问 V 的所有未访问邻接点,之后,按这些顶点被访问的先后次序,依次访问它们的邻接点,直至图中所有和 V 连通的顶点都被访问到。(队列)
  • 【高瓴】无向图求割点。
    • 割点 / 关节点:
      • 若删除某个节点 u 和它带有的边,连通分量数目增加。
      • 若生成树中某个非叶子顶点V,其某棵子树的根和子树中的其他节点,均没有指向V的祖先的回边,则V为关节点。因为删去v,则其子树和图的其它部分被分割开来。
    • Tarjan 复杂度 O(V+E):
      • dfn 数组 维护从某节点开始 dfs 的访问顺序。
      • low 数组 维护某节点 dfs 能访问到的最小 dfn 节点,也就是最祖先的节点;平常。
      • 先 dfs,没点了 / 该点是祖先 回溯,回溯过程中,修改父亲节点 low = 子节点 low。
      • 如果一个父节点 v 的子节点 c 的 low[c] ≥ dfn[v],即我除了 连父节点的环,就没有连更早的祖先,那么 v 是割点。如果 low[c] > dfn[v],即 我没有连回任何祖先的环,则 c - v 是割边。
      • (为什么没有连到其他更年长的兄弟的环呢?因为如果有,无向图 则兄弟 dfs 时就会遍历到我,并且遍历到父节点,从而拥有了连到父节点的环。)

机器学习

  • 【复旦】列举比较常见的聚类算法,K-means 原理,除了 K-means 还有什么聚类算法

    • K-means:

      • 选择初始化的 k 个样本作为初始聚类中心 [公式]
      • 对数据集中每个样本 [公式] ,计算它到 k 个聚类中心的距离,并将其分到聚类中心距离最小的类别;
      • 针对每个类别 [公式] ,重新计算它的聚类中心 [公式] (该类所有样本的质心);
      • 重复上面两步操作,直到达到某个中止条件(迭代次数、最小误差变化等)。
    • 优:容易理解,效果不错,复杂度低

    • 劣:容易陷入局部最优,K 值需人为设定,对初始聚类中心敏感,对异常值敏感,不适合非凸形状聚类。

    • 其他聚类算法:

      • 均值偏移 mean shift 更密集的地方 滑动窗口
      • img img
      • 层次聚类:自下而上,一开始将每个数据点视为单一的聚类,然后依次合并。
  • K 近邻(KNN):

    • 给一个新数据,通过与它离得最近的 K 的样本 类别 投票,决定它是什么类别。
    • 优:模型不用训练,对异常值不敏感。
    • 劣:模型预测复杂度为 O(已有数据个数),K 值有影响,或许不适合很多特征。
  • 【北航】谈一谈梯度下降

  • 【北航】最小二乘法:

    • 最小二乘法是解决曲线拟合问题最常用的方法。其基本思路是:令

      img

      其中,

      img

      是事先选定的一组线性无关的函数,

      img

      是待定系数

      img

      ,拟合准则是使

      img

      img

      的距离

      img

      的平方和最小,称为最小二乘准则。

  • 【复旦】神经网络中的激活函数举例,它们各自的特点,以及哪个激活函数效果更好,为什么

    • sigmoid: \(\sigma(x)=1/(1+e^{-x})\)
      • 优:将数值压缩到 0 1,导数为 \(\sigma(x)(1-\sigma(x))\) 好算。
      • 劣:输出均值非0(0.5),梯度消失(Gradient vanishing)每次传过来的梯度都会乘上小于1的值,靠近输出的层 参数更新幅度大,而靠近输入的层 参数更新幅度小。
    • ReLU: max(0, x) REctified Linear Unit
      • 优:不饱和(梯度不会过小),计算量小
      • 劣:输出均值非0,Dead ReLU:某层输入< 0,相应的输出值为0,那么此时该层就会"死亡",参数不会更新,而且不可逆转,神经元永远失效。
      • Leaky ReLU: >0, 1 | <0, 0.1。解决 Dead ReLU。
    • Tanh:
      • 优:输出均值为0,原点附近与 y = x 函数相近;
      • 劣:梯度消失(Gradient vanishing,但比 sigmoid 好),计算量大。
    • softmax(应该并不算):[公式] ,将多分类的输出值 转换为 0~1 Σ=1 的概率分布。
  • 【复旦】损失函数有哪些

    • MSE:欧距离不开根号 L2 loss;RMSE。
    • MAE:绝对值 L1 loss。
    • cross-entropy(分类): \(L=−[y\log\hat y+(1−y)\log(1−\hat y)]\)[公式]
    • Hinge Loss(分类):正确类别 要比 其他类别 大一个 margin。
  • 【复旦】BP 的英文全称,原理

    • backward propagation。
    • 首先,ANN 是怎么训练的。目标函数 求导 导数方向向下走一小步 gradient descent。
    • 求导:\(y=f(x), \partial y/\partial t=\partial y/\partial x\cdot\partial x/\partial t\)
  • 【复旦】解决过拟合的方法并具体说明

    • 过拟合:训练集上表现很好,测试集上表现很差。欠拟合:训练集上表现很差。
    • 解决过拟合:
      • 通过交叉检验,得到较优的模型参数;
      • 正则化,loss 添加正则项。L1(绝对值的和)L2(平方开根)正则。
  • 【复旦】支持向量机怎么改进,改进算法有哪些,改进方向是什么

    • SVM:分类超平面跟两类数据的间隔要尽可能大(即远离两边数据)
    • 先将数据变成线性可分的,再构造出最优分类超平面;通过选择一个核函数 K ,将低维非线性数据映射到高维空间中。
    • 优:
    • 劣:
  • 【复旦】线性回归 / 逻辑回归,原理和区别

    • 线性回归:用 WT+b 直线 拟合数据,loss function MSE(欧几里得距离)。logistic 回归:sigmoid 函数套上一个回归模型,img loss function 最大似然估计,多标签则 n 个 二分类器。
    • 逻辑回归:分类问题,线性回归:回归问题。
    • logistic 回归 损失函数:对数似然函数,\(L(\hat y,y)=-(y\log\hat y+(1-y)\log(1-\hat y))\) img
  • 【北航】朴素贝叶斯:

    • 全概率公式,贝叶斯公式 P(A|B) = P(B|A)*P(A)/P(B)。
    • p(类别|特征) = p(类别) Πp(特征|类别) / Πp(特征) 在这里插入图片描述
    • 朴素 naive:特征之间相互独立,无超参可以调。不朴素就是考虑特征间 相关 / 依赖关系。
    • 对异常值敏感吗?感觉不敏感,(比例不高的)异常值会被淹没。
    • 拉普拉斯修正:在这里插入图片描述
  • 【复旦】模式识别中有哪些常用距离(马氏距离、棋盘距离、街道距离、欧氏距离)

    • 欧氏距离:平方和开根号,旋转不变性。
    • 曼哈顿距离:|x1 - x2| + |y1 - y2|,城市街区距离。切比雪夫距离:max(|x1 - x2|, |y1 - y2|)
    • 马氏距离:两个分布有多相似,数据的协方差距离, img 在这里插入图片描述
    • 余弦相似度:cos(A, B)= A*B / |A|*|B|,方向的差异。
  • 特征归一化 / 标准化 / normalization:消除特征间 单位和尺度差异的影响。

  • one-hot:把分类变量表示为二进制向量;直接使用不重复的数字,会将人工假设导致的误差引入到类别特征中。

  • 【北航】处理高维组合特征,PCA:

    • 简化数据集的技术,它是一个线性变换,把数据变换到一个新的坐标系统中,任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
    • 用于降维,同时保持数据集的对方差贡献最大的特征。
  • 数据不平衡,如何解决:

    • 主要存在于有监督机器学习任务中。过多关注多数类,从而使得少数样本的分类性能下降。
    • 过采样 / 欠采样,改变权重,数据增强,集成学习(Adaboost),转换为异常检测问题。
  • 【北航】决策树,随机森林:

    • 构造:
      • 学习一颗最优的决策树,是一个NP-完全问题,因此,传统决策树算法基于启发式算法,例如贪心 即每个节点创建最优决策。
      • 最优:最大 信息增益、信息增益比(解决数据不平衡)、Gini 系数。
      • 局部过拟合的剪枝:创建好决策树后,再从下往上剪枝。
    • 随机森林的随机性:每颗树的训练样本是随机的;选取的特征集是随机的。
    • 为什么不能用全样本 训练 m 棵决策树:因为训出来都一模一样,不能避免过拟合。
    • 优:随机森林并行,处理搞维度数据(不用降维)
    • 劣:训练慢,在噪声较大的数据集 过拟合。
  • 【北航】集成学习:

    • Bagging:并行训练多个分类器,集体投票 减少方差。
    • Boosting:串行 迭代,提高被错误分类的样本的权重,降低被正确分类的样本的权重,集体投票。
    • XGBoost:
  • (简历问题)ARIMA,LSTM,TCN,RNN:【】

    • ARIMA:
    • RNN:img
    • LSTM:RNN 的问题:不适用于长期记忆。基本思想:
      • 引入“门运算”,遗忘门 输入门,选择性记忆。
      • 引入“门运算”,将梯度中的累乘变为累加,解决梯度消失问题
    • TCN:RNN 的问题:只能串行计算,要保存所有中间变量,因此非常计算密集。因果卷积 && 空洞 dilated 卷积 + 残差模块。img
    • Markov:
  • 【复旦】顶会或顶刊名称:

    • CVPR: International Conference on Computer Vision and Pattern Recognition;
    • ICCV: International Conference on Computer vision
    • ECCV: European Conference on Computer Vision
    • ICML: International Conference on Machine Learning
    • NeurIPS: Annual Conference on Neural lnformation Processing Systems
    • AAAl: Association for the Advancement of Artificial Intelligence
    • ICLR: International Conference on Learning Representation
    • IJCAI: International Joint Conferences on Artificial Intelligence
    • ACM SIGKDD: The Association for Computing Machinery's Special Interest Group on Knowledge Discovery and Data Mining
    • SIGGRAPH: Special Interest Group for Computer GRAPHICS
    • EMNLP: The Conference on Empirical Methods in Natural Language Processing
    • 顶刊:
      • TPAMl: IEEE Trans on Pattern Analysis and Machine Intelligence.
      • lJCV: International Journal of Computer Vision
      • TIP: IEEE Transactions on lmage Processing

操作系统(非重点)

  • 【计算所】中断、虚拟内存、进程和线程通信

  • 【北航】进程调度算法(可能是 LIFO 这种?)

    • FCFS 先到先得,SJF shortest job first 短作业优先,RR round-robin 轮流,multi level feedback queue
  • 【北航】进程之间通信的方式:

    • shared memory,message passing。
  • 【北航】进程和线程的区别:

    • 进程:资源分配最小单位,线程:资源调度最小单位
    • 进程有独立地址空间,代码段、堆栈段、数据段,线程共享进程中的数据,使用相同的地址空间。线程通信更方便,可以直接 shared memory。
    • 线程出错(段错误 除0),会 kill 掉整个进程(包括其他线程)
  • 【北航】临界区:访问临界资源(互斥访问资源)的那段代码。

计算机网络(非重点)

  • 【复旦】TCP 和 UDP 的区别

    • 3a819be58c17309e0cd5ac309290d7f.png
  • 【北大】TCP 三次握手

    • 一次握手:客户端发送带有 SYN 标志的连接请求数据包给服务端
      二次握手:服务端发送带有 SYN+ACK 标志的连接请求和应答数据包给客户端
      三次握手:客户端发送带有 ACK 标志的应答数据包给服务端(可以携带数据了)
    • 四次挥手:两边都发 FIN+ACK。
  • 【北航】输入网址点击转到后发生的事

    1. 应用层:DHCP 协议,得到本机 IP 地址。
    2. 网络层 / 链路层:ARP 协议,IP地址 → 物理地址,得到 DNS server 的 MAC 地址。
    3. 应用层 & 传输层 & 网络层 & 链路层:DNS 域名解析,得到 IP 地址
    4. 应用层 & 传输层 & 网络层 & 链路层:url 解析得到 HTTP 报文,组装 TCP/UDP → IP → MAC 报文,建立 TCP/UDP 连接。
  • 【北航】计网 各个层的功能:

    • OSI:应用层,表示层,会话层,传输层,网络层,链路层,物理层。
    • TCP/IP:应用层,传输层,网络层,链路层,物理层。
    • 交换信息的表示方式,管理主机间的会话;
    • 传输层:为端到端连接提供(可靠的)传输服务。
  • 【北航】为什么网络层不直接面向连接:

    • IP 地址不断变化,不断建立连接的代价。
    • 应用场景如视频通话,没有必要性。
  • 【北航】DNS的工作原理:

    • 递归查询:本地 server 也不知道,那我去帮你问吧。
    • 迭代查询:本地 server 告诉你上一级 server 的地址,你再去问吧。
  • 【北航】OSPF 协议:

    • open shortest path first。
    • 使用 link state 协议:发Hello报文 - 建立邻接关系 - 形成链路状态数据库 - dijkstra 算法 - 形成路由表。
    • 就是一个简单的寻最短路,链路cost是管理员配置的。
    • OSPF 消息直接承载在 IP 数据报中(而非TCP / UDP),有5种报文(hello DBD摘要 LSR详细讲讲 LSU我的状态多个LSA LSAck收到),不是ICMP通告。
    • OSPF属于哪一层:有些人说OSPF使用IP协议的功能,应该在IP层之上,即传输层;也有些人说OSPF是路由协议里的一种,应该属于网络层。OSPF报文直接封装在IP数据包内,专门为 TCP/IP 而设计的路由协议,因此属于网络层。

数据库(非重点)

  • 【北航】1 2 3 NF 范式:
    • 1:数据表每一列都不可分割,即 某个数学不能有多个值,不能表中套表、
    • 2:每行必须可以唯一区分(主键存在)
    • 3:某个属性不依赖于其他属性。比如 AI工程师+金融 → 薪资=高,那么就单独建一张表存储这个关系。
  • 【北航】除了关系型数据库还有什么数据库?
    • 网状数据库、层次数据库之类。

计算机组成原理(非重点)

  • 【复旦】你电脑内存多少g的,硬盘多少g的,内存和硬盘的关系是怎样的

    • 16.0 GB (15.3 GB 可用),512 GB,两码事,内存是硬盘的 cache。
  • 【北航】设置缓冲区的理论依据:

    • 局部性原理:时间局部性(现在访问的 过会还可能访问)空间局部性(访问这个点 旁边数据也可能访问)。
  • 【北大】【北航】电脑开机的过程:

    • 计算机是如何启动的,我说先进bios,老师打断我说bios在哪?我说rom啊,然后老师又问rom在哪,我猜是cpu(并不是),但不敢乱说,只好说没研究那么深。
    • 通电 → 初始化启动程序 BIOS → 操作权交给 CPU 载入 os 到内存。
    • 通电 → BIOS 硬件初始化和检查 → 控制权交给主引导记录(MBR) → MBR找启动文件并读入内存 → 控制权给启动文件 载入操作系统
    • BIOS:一组固化到计算机内主板上一个ROM芯片上的程序,保存着计算机最重要的基本输入输出的程序(ROM)、开机后自检程序、系统自启动程序,其主要功能是为计算机提供最底层的、最直接的硬件设置和控制。
    • 主板:
      • 电路板,安装了 BIOS芯片、南北桥芯片、I/O控制芯片、键盘和面板控制开关接口、指示灯插接件、扩充插槽、直流电源供电接插件 等元件
      • 如果说CPU是电脑的心脏,那么主板就是血管和神经,有了主板,电脑的CPU才能控制硬盘、软驱等周边设备。
      • 北桥芯片:主板上离CPU最近的芯片,控制 CPU 内存 显卡 等高速设备。
      • 南桥芯片:负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等。
    • 按下开机开关,电脑主板给电源发送启动信号,电源开始向主板、硬盘、光驱等设备供电。
    • 硬件设备通电后,电脑开始启动,首先,主板开始初始化启动程序,主板BIOS先检测所有硬件是否连接正常。
    • 确认连接的设备正常后,电脑开始真正启动,主板会再一次对某些部件进行一些检测,准备载入操作系统。
    • 所有检测完成后,主板将操作权交给了CPU,CPU按照预订的程序,开始从硬盘读取储存的信息,并加载在内存
    • 系统的加载是相当复杂的,内容繁多,首先,系统先加载操作系统所需的文件,然后检测所有的硬件,加载相应硬件的驱动程序加载完毕后进入欢迎界面。
  • 【北航】USB 接鼠标 键盘有什么区别。

    • 不需要在bios中进行任何设置,插在计算机usb口上可以直接使用,热插拔。
  • 【北航】计算机的存储介质:

    • 半导体:ROM RAM,磁盘 磁介质。
  • 【北航】计算机 组成 体系结构 有什么区别?

    • 组成:实现, 存储器 处理器 数据类型 指令格式 这些。
    • 体系结构:概念性结构和功能特性,更 high-level。
  • 【北航】什么是虚拟内存,转换,TLB:

    • 虚拟内存:

      • 每个程序拥有自己的地址空间,这个地址空间被分割成多个块,每一块称为一页 (Page, 4KB)。
      • 这些页被映射到物理内存,但不需要映射到连续的物理内存,也不需要所有页都必须在物理内存中。
      • 虚拟内存:物理内存扩充成更大的逻辑内存,从而让程序获得更多的可用内存。程序不用将地址空间中的每一页都映射到物理内存,也就是说,一个程序不需要全部调入内存就可以运行,这使得有限的内存运行大程序成为可能。
    • MMU:地址空间 → 物理内存,TLB: Translation Lookaside Buffer 页表缓冲区。

编译原理(非重点)

  • 【北航】从代码到可执行程序的步骤:
    • 词法分析,语法分析,语义分析,中间代码生成,优化中间代码,生成代码,优化代码。
    • 词法 lexical 分析:识别单词类型是什么(int x = 3 → int, x, =, 3)
    • 语法 syntax 分析:int x = 3 符合语法规则吗,fit 哪一条语法规则。
    • 语义 semantic 分析:这个语法规则代表什么意思,我们为语法规则配上什么样的动作。
    • 预处理 → 编译 → 汇编(得到二进制文件) → 链接(对调用的库)
  • 词法分析:
    • language:字符串集合,比如 L = {ω | ω∈(a,b)*} 。
    • grammar 文法:表达 language 构成规则的形式化方法。\(G=(V_N,V_T,S,P)\),非终结符集,终结符集,文法开始符号,产生式。
    • re ↔ FA ↔ grammar。
    • NFA → DFA:二进制状态法,n state 的 NFA,变成DFA 最多可能有 2^n 个 state。
    • DFA → minimum DFA:集合划分法。把所有状态认为是一个集合,根据集合状态转移的分歧,切割集合。
  • 【北航】语法分析:LL 分析法,LR 分析法:
    • LL: img
    • 终结首符集 FIRST(a):从某个短语可以推出的 所有句子 的首终结符。
    • 后随终结符集 FOLLOW(A):·所有合法句型中,可能出现在 A 后方的终结符集合。
    • 构造 预测分析表。
    • LR:img img
    • 画状态转移自动机 → LR分析表。
    • LL 和 LR 的比较:
      • 自上而下 & 自下而上。
      • LL 写程序更简单,分析表更小;
      • LR 适用范围更广,能支持更多 CFG(上下文无关文法)。
    • LL 和 LR 的限制:
      • LL:比如 LL(1),如果两个产生式 拥有相同的 first 集,那么分析表冲突,不能用 LL。
      • LR:一个状态里,出现 移进-规约冲突,或有两个以上不同的规约。
  • 【北航】上下文无关文法 CFG 的特点:
    • 可以随意将 文法规则左边的非终结符 替换为 右边的终结符或非终结符,不用考虑 LHS 的上下文。

其他

  • 【复旦】句柄是什么,句柄怎么用。(不对,这好像是问的编译原理)
    • 在程序设计中,句柄是一种特殊的智能指针,指获取另一个对象的方法(广义的指针)。
    • Windows 句柄 16 位无符号整数。
    • 和内存管理的虚拟地址(段 页式,页表 MMU 翻译)有关。
  • 【北航】面向对象的三个性质:
    • 封装 集成 多态(重载 overload 重写 override)。
  • 【北航】函数名,函数指针,函数的入口地址:
    • 函数名:c语言中,函数名就是一个函数指针。
    • 入口地址:函数时执行的第一条指令的地址,通过这个地址可以找到该函数。
    • 函数指针:指向入口地址,就可以通过该指针调用函数了。
  • 【北航】数组名,数组首地址,数组指针:
    • 数组名不是指针,是数组首地址。但 sizeof 时返回整个数组地址大小。
    • 编译器会自动将 数组名 a 替换为 指向该数组首元素的指针 &a[0]。
  • malloc 和 new 的区别。
    • new从自由存储区上分配内存,malloc从堆上分配内存。自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。
    • new、delete 返回的是某种数据类型指针;malloc、free 返回的是 void 指针。
    • 使用new操作符申请内存分配时,无须指定内存块的大小,编译器会根据类型信息自行计算;使用malloc则需要显式指出所需内存的尺寸。
    • new 可以调用对象的构造函数,对应的 delete 调用相应的析构函数;malloc 仅仅分配内存,free 仅仅回收内存,并不执行构造和析构函数。
    • new、delete 是操作符,可以重载;malloc、free 是函数,可以重写(覆盖)。


posted @ 2023-04-04 15:06  MoonOut  阅读(11795)  评论(0编辑  收藏  举报