文心一言 VS chatgpt (16)-- 算法导论4.1 1~2题

一、当A的所有元素均为负数时,FIND-MAXIMUM-SUBARRAY返回什么?

文心一言:

当A的所有元素均为负数时,FIND-MAXIMUM-SUBARRAY返回-1。

这是因为在二进制中,当所有元素均为负数时,A的每个元素都对应一个负数,而-1的二进制表示是11111111,与A的每个元素的值的每一位的负号是相对应的,所以,如果FIND-MAXIMUM-SUBARRAY调用这个函数,它会返回-1。

在这里插入图片描述

chatgpt:

当A的所有元素均为负数时,FIND-MAXIMUM-SUBARRAY函数会返回具有最小和的子数组。因为子数组所有元素都是负数,所以它们的总和越小,该子数组就越适合作为“最大子数组”的解。例如,对于数组A=[-3, -2, -5, -7, -1],最大子数组是[],因为其总和为0,而不是任何可能包含在数组中的单个元素或任何非空子数组。

在这里插入图片描述

二、对最大子数组问题,编写暴力求解方法的伪代码,其运行时间应该为 $Θ (n^2 )$。

文心一言:

最大子数组问题是指在一个数组中找到最大的连续子数组,使得子数组的和最大。下面是一个暴力求解最大子数组问题的伪代码:

function findMaxSubarray(arr, k):  
    n = length(arr)  
    maxSum = sum(arr)  
    maxSubArray = [0] * n  # 用来存储当前找到的最大子数组和的最大值  
  
    for i in range(n):  
        subArray = []  
        for j in range(i, n):  
            subArray.append(arr[j] + arr[j+1])  
        subArray.sort()  # 先将子数组排序,可以提高效率  
        subArray.reverse()  # 反转子数组,可以提高效率  
        maxSubArray[i] = max(subArray)  # 将当前子数组的和更新到maxSubArray中  
        maxSum = max(maxSum, sum(subArray))  # 更新最大和  
  
    return maxSubArray, maxSum

运行时间为$Θ (n^2)$,因为需要对每个子数组进行排序和反转操作。如果使用更高效的算法,如双指针算法,可以将时间复杂度优化到O(n)。

在这里插入图片描述

chatgpt:

以下是最大子数组问题的暴力求解方法的伪代码,其运行时间为 $Θ (n^2)$:

FIND-MAXIMUM-SUBARRAY-BRUTE-FORCE(A)
  n = length[A]
  max_sum = -∞
  for i = 1 to n
      current_sum = 0
      for j = i to n
          current_sum = current_sum + A[j]
          if current_sum > max_sum
              max_sum = current_sum
              low_idx = i
              high_idx = j
  return [low_idx, high_idx, max_sum]

该算法的基本思想是对于数组A中的每个元素,都计算以该元素为起点的所有可能子数组的和,并记录出现的最大和和该子数组的起始和结束

在这里插入图片描述

posted @ 2023-05-12 21:53  福大大架构师每日一题  阅读(20)  评论(0编辑  收藏  举报