2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将

2023-05-11:给你一个 m x n 的二进制矩阵 grid,

每个格子要么为 0 (空)要么为 1 (被占据),

给你邮票的尺寸为 stampHeight x stampWidth。

我们想将邮票贴进二进制矩阵中,且满足以下 限制 和 要求 :

覆盖所有空格子,不覆盖任何被占据的格子,

可以放入任意数目的邮票,邮票可以相互有重叠部分,

邮票不允许旋转,邮票必须完全在矩阵内,

如果在满足上述要求的前提下,可以放入邮票,请返回 true ,否则返回 false。

输入:grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3。

输出:true。

答案2023-05-11:

大体过程如下:

1.首先对矩阵 grid 进行二维前缀和计算,得到一个新的矩阵 sum。该矩阵中每个位置表示从左上角出发,到该位置形成的子矩阵中所有元素的和。

2.对 grid 中的每个为 0 的位置 (i, j),检查以该位置为左上角的子矩阵是否能够被指定的印章完全覆盖。如果可以,将 diff[i][j] 加 1,diff[i][j+stampWidth] 减 1,diff[i+stampHeight][j] 减 1,diff[i+stampHeight][j+stampWidth] 加 1。这里 diff 矩阵用于记录每个位置的变化量。

3.遍历 grid 中的每一行,使用滚动数组的方式还原 cntpre 数组,并通过它们来计算每列中为 0 的位置的数量。同时,如果某个位置 (i, j) 的值为 0 且它所在列中没有其他的 0,则返回 false;否则返回 true。

时间复杂度为 O(mn),其中 m 和 n 分别表示矩阵 grid 的行数和列数。这是因为函数需要遍历整个矩阵,并对每个位置进行常数次操作。同时,二维前缀和、二维差分和滚动数组优化的时间复杂度也都是 O(mn)。

空间复杂度为 O(mn),因为函数中创建了两个 m+1 行 n+1 列的二维数组 sumdiff,以及一个长度为 n+1 的一维数组 cntpre。这些数组所占用的总空间为 (m+1)(n+1) + 2(n+1) = mn + 3m + 3n + 3,即 O(mn)。

go完整代码如下:

package main

import "fmt"

func main() {
	grid := [][]int{{1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}}
	stampHeight := 4
	stampWidth := 3
	isPossibleToStamp := possibleToStamp(grid, stampHeight, stampWidth)
	fmt.Println(isPossibleToStamp)
}

func possibleToStamp(grid [][]int, stampHeight, stampWidth int) bool {
	m, n := len(grid), len(grid[0])
	sum := make([][]int, m+1)
	sum[0] = make([]int, n+1)
	diff := make([][]int, m+1)
	diff[0] = make([]int, n+1)
	for i, row := range grid {
		sum[i+1] = make([]int, n+1)
		for j, v := range row { // grid 的二维前缀和
			sum[i+1][j+1] = sum[i+1][j] + sum[i][j+1] - sum[i][j] + v
		}
		diff[i+1] = make([]int, n+1)
	}

	for i, row := range grid {
		for j, v := range row {
			if v == 0 {
				x, y := i+stampHeight, j+stampWidth // 注意这是矩形右下角横纵坐标都 +1 后的位置
				if x <= m && y <= n && sum[x][y]-sum[x][j]-sum[i][y]+sum[i][j] == 0 {
					diff[i][j]++
					diff[i][y]--
					diff[x][j]--
					diff[x][y]++ // 更新二维差分
				}
			}
		}
	}

	// 还原二维差分矩阵对应的计数矩阵,这里用滚动数组实现
	cnt := make([]int, n+1)
	pre := make([]int, n+1)
	for i, row := range grid {
		for j, v := range row {
			cnt[j+1] = cnt[j] + pre[j+1] - pre[j] + diff[i][j]
			if cnt[j+1] == 0 && v == 0 {
				return false
			}
		}
		cnt, pre = pre, cnt
	}
	return true
}

在这里插入图片描述

rust完整代码如下:

fn main() {
    let grid = vec![
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
    ];
    let stamp_height = 4;
    let stamp_width = 3;
    let is_possible_to_stamp = possible_to_stamp(&grid, stamp_height, stamp_width);
    println!("{}", is_possible_to_stamp);
}

fn possible_to_stamp(grid: &[Vec<i32>], stamp_height: usize, stamp_width: usize) -> bool {
    let m = grid.len();
    let n = grid[0].len();
    let mut sum = vec![vec![0; n + 1]; m + 1];
    let mut diff = vec![vec![0; n + 1]; m + 1];

    for i in 0..m {
        for j in 0..n {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for i in 0..m {
        for j in 0..n {
            if grid[i][j] == 0 {
                let x = i + stamp_height;
                let y = j + stamp_width;

                if x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0 {
                    diff[i][j] += 1;
                    diff[i][y] -= 1;
                    diff[x][j] -= 1;
                    diff[x][y] += 1;
                }
            }
        }
    }

    let mut cnt = vec![0; n + 1];
    let mut pre = vec![0; n + 1];

    for i in 0..m {
        for j in 0..n {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];

            if cnt[j + 1] == 0 && grid[i][j] == 0 {
                return false;
            }
        }

        std::mem::swap(&mut cnt, &mut pre);
    }

    true
}

在这里插入图片描述

c语言完整代码如下:

#include <stdio.h>
#include <stdlib.h>

int possibleToStamp(int** grid, int gridSize, int* gridColSize, int stampHeight, int stampWidth) {
    int m = gridSize, n = *gridColSize;
    int** sum = (int**)malloc(sizeof(int*) * (m + 1));
    for (int i = 0; i <= m; i++) {
        sum[i] = (int*)malloc(sizeof(int) * (n + 1));
    }
    int** diff = (int**)malloc(sizeof(int*) * (m + 1));
    for (int i = 0; i <= m; i++) {
        diff[i] = (int*)malloc(sizeof(int) * (n + 1));
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] == 0) {
                int x = i + stampHeight, y = j + stampWidth;
                if (x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0) {
                    diff[i][j]++;
                    diff[i][y]--;
                    diff[x][j]--;
                    diff[x][y]++;
                }
            }
        }
    }

    int* cnt = (int*)malloc(sizeof(int) * (n + 1));
    int* pre = (int*)malloc(sizeof(int) * (n + 1));
    for (int i = 0; i <= n; i++) {
        cnt[i] = 0;
        pre[i] = 0;
    }
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];
            if (cnt[j + 1] == 0 && grid[i][j] == 0) {
                free(cnt);
                free(pre);
                for (int k = 0; k <= m; k++) {
                    free(sum[k]);
                }
                free(sum);
                for (int k = 0; k <= m; k++) {
                    free(diff[k]);
                }
                free(diff);
                return 0;
            }
        }
        int* tmp = cnt;
        cnt = pre;
        pre = tmp;
    }

    free(cnt);
    free(pre);
    for (int i = 0; i <= m; i++) {
        free(sum[i]);
    }
    free(sum);
    for (int i = 0; i <= m; i++) {
        free(diff[i]);
    }
    free(diff);
    return 1;
}

int main() {
    int gridSize = 5, gridColSize = 4;
    int** grid = (int**)malloc(sizeof(int*) * gridSize);
    for (int i = 0; i < gridSize; i++) {
        grid[i] = (int*)malloc(sizeof(int) * gridColSize);
    }
    int data[5][4] = { {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0} };
    for (int i = 0; i < gridSize; i++) {
        for (int j = 0; j < gridColSize; j++) {
            grid[i][j] = data[i][j];
        }
    }
    int stampHeight = 4, stampWidth = 3;
    int isPossibleToStamp = possibleToStamp(grid, gridSize, &gridColSize, stampHeight, stampWidth);
    printf("%s\n", isPossibleToStamp ? "true" : "false");
    for (int i = 0; i < gridSize; i++) {
        free(grid[i]);
    }
    free(grid);
    return 0;
}

在这里插入图片描述

c++完整代码如下:

#include <iostream>
#include <vector>

using namespace std;

bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
    int m = grid.size(), n = grid[0].size();
    vector<vector<int>> sum(m + 1, vector<int>(n + 1)), diff(m + 1, vector<int>(n + 1));

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] == 0) {
                int x = i + stampHeight, y = j + stampWidth;
                if (x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0) {
                    diff[i][j]++;
                    diff[i][y]--;
                    diff[x][j]--;
                    diff[x][y]++;
                }
            }
        }
    }

    vector<int> cnt(n + 1), pre(n + 1);
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];
            if (cnt[j + 1] == 0 && grid[i][j] == 0) {
                return false;
            }
        }
        swap(cnt, pre);
    }

    return true;
}

int main() {
    vector<vector<int>> grid{ {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0} };
    int stampHeight = 4, stampWidth = 3;
    bool isPossibleToStamp = possibleToStamp(grid, stampHeight, stampWidth);
    cout << (isPossibleToStamp ? "true" : "false") << endl;
    return 0;
}

在这里插入图片描述

posted @ 2023-05-11 21:47  福大大架构师每日一题  阅读(52)  评论(0编辑  收藏  举报