生成函数(母函数)入门详解

本文章从以上两位大佬的博客参考而来!再次感谢!

 

母函数,又称生成函数,是ACM竞赛中经常使用的一种解题算法,常用来解决组合方面的题目。

 

在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供

关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。

母函数可分为很多种,包括普通母函数指数母函数、L级数、贝尔级数和狄利克雷级数。对每个序列都可以写出以

上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的

特性和问题的类型。

 

 

这里先给出两句话

 

1.“把组合问题的加法法则和幂级数的乘幂对应起来”

2.“母函数的思想很简单 — 就是把离散数列和幂级数一 一对应起来,把离散数列间的相互结合关系对应成为幂级数间的

运算关系,最后由幂级数形式来确定离散数列的构造. “

 

 

 

我们首先来看下这个多项式乘法:

母函数图(1)

由此可以看出:

1.x的系数是a1,a2,…an 的单个组合的全体。

2. x^2的系数是a1,a2,…a2的两个组合的全体。

………

n. x^n的系数是a1,a2,….an的n个组合的全体(只有1个)。

 

进一步得到:

母函数图(2)

 

母函数的定义

对于序列a0,a1,a2,…构造一函数:

母函数图(3)

称函数G(x)是序列a0,a1,a2,…的母函数。

 

 

 

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:

1个1克的砝码可以用函数1+1*x^1表示,

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,

上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

 

不知道大家理解没,我们这里结合前面那句话:

“把组合问题的加法法则和幂级数的乘幂对应起来“

 

接着讨论上面的1+x^2,这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

 

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。


接着上面,接下来是第二种情况:

 

第二种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

母函数图(4)

 

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

 

 

 

 

母函数通常解决类似如下的问题:

给5张1元,4张2元,3张5元,要得到15元,有多少种组合?

某些时候会规定至少使用3张1元、1张2元、0张5元。

某些时候会规定有无数张1元、2元、5元。

……

 

解题过程

解题时,首先要写出表达式,通常是多项的乘积,每项由多个x^y组成。如(1+x+x^2)(1+x^4+x^8)(x^5+x^10+x^15)。

通用表达式为

(x^(v[0]*n1[0])+x^(v[0]*(n1[0]+1))+x^(v[0]*(n1[0]+2))+...+x^(v[0]*n2[0]))
(x^(v[1]*n1[1])+x^(v[1]*(n1[1]+1))+x^(v[1]*(n1[1]+2))+...+x^(v[1]*n2[1]))
...
(x^(v[K]*n1[K])+x^(v[K]*(n1[K]+1))+x^(v[K]*(n1[K]+2))+...+x^(v[K]*n2[K]))

K对应具体问题中物品的种类数。

v[i]表示该乘积表达式第i个因子的权重,对应于具体问题的每个物品的价值或者权重。

n1[i]表示该乘积表达式第i个因子的起始系数,对应于具体问题中的每个物品的最少个数,即最少要取多少个。

n2[i]表示该乘积表达式第i个因子的终止系数,对应于具体问题中的每个物品的最多个数,即最多要取多少个。

对于表达式(1+x+x^2)(x^8+x^10)(x^5+x^10+x^15+x^20),v[3]={1,2,5},n1[3]={0,4,1},n2[3]={2,5,4}。

解题的关键是要确定v、n1、n2数组的值。

通常n1都为0,但有时候不是这样。

n2有时候是无限大。

 

 

 

通用模板:

 1 #include<stdio.h>
 2 #include<string.h>
 3 #include<algorithm>
 4 #include<stack>
 5 #include<queue>
 6 #include<iostream>
 7 #include<map>
 8 #include<vector>
 9 #define Inf 0x3f3f3f3f
10 #define PI acos(-1.0)
11 using namespace std;
12 const int MXAN=300+10;
13 int dp[1234];
14 int str[1234];
15 int main()
16 {
17     int m,n,i,j,pos;
18     int a[MXAN];
19     int b[MXAN];
20     while(cin>>n&&n)
21     {
22         for(int i=0;i<=300;i++)
23         {
24             a[i]=1;
25             b[i]=0;
26         }
27         for(int i=2;i<=17;i++)
28         {
29             for(int j=0;j<=n;j++)
30             {
31                 for(int k=0;k+j<=n;k+=i*i)
32                 {
33                     b[k+j]+=a[j];
34                 }
35             }
36             for(int j=0;j<=n;j++)
37             {
38                 a[j]=b[j];
39                 b[j]=0;
40             }
41         }
42         cout<<a[n]<<endl;
43     }
44     return 0;
45 }

 

 

我们来解释下上面标志的各个地方:(***********!!!重点!!!***********)

①  、首先对c1初始化,由第一个表达式(1+x+x^2+..x^n)初始化,把质量从0到n的所有砝码都初始化为1.

②  、 i从2到n遍历,这里i就是指第i个表达式,上面给出的第二种母函数关系式里,每一个括号括起来的就是一个表达式。

③、j 从0到n遍历,这里j就是(前面几个表达式累乘的表达式)里第j个变量,如(1+x)(1+x^2)(1+x^3),j先指示的是1和x的系数,i=2执行完之后变为

(1+x+x^2+x^3)(1+x^3),这时候j应该指示的是合并后的第一个括号的四个变量的系数。

④ 、 k表示的是第j个指数,所以k每次增i(因为第i个表达式的增量是i)。

⑤  、把c2的值赋给c1,而把c2初始化为0,因为c2每次是从一个表达式中开始的。

posted @ 2018-07-29 16:45  左手边五十米  阅读(3029)  评论(0编辑  收藏  举报