C++ 11 多线程下std::unique_lock与std::lock_guard的区别和用法

这里主要介绍std::unique_lock与std::lock_guard的区别用法

先说简单的

一、std::lock_guard的用法

std::lock_guard其实就是简单的RAII封装,在构造函数中进行加锁,析构函数中进行解锁,这样可以保证函数退出时,锁一定被释放。

简单来说,就是防止开发者粗心大意,函数在分支中return时,忘记unlock操作导致后续操作全部被挂起甚至引发死锁情况的。

用法如下:

// lock_guard example
#include <iostream>       // std::cout
#include <thread>         // std::thread
#include <mutex>          // std::mutex, std::lock_guard
#include <stdexcept>      // std::logic_error

std::mutex mtx;

void print_even (int x) {
  if (x%2==0) std::cout << x << " is even\n";
  else throw (std::logic_error("not even"));
}

void print_thread_id (int id) {
  try {
    // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception:
    std::lock_guard<std::mutex> lck (mtx);
    print_even(id);
  }
  catch (std::logic_error&) {
    std::cout << "[exception caught]\n";
  }
}

int main ()
{
  std::thread threads[10];
  // spawn 10 threads:
  for (int i=0; i<10; ++i)
    threads[i] = std::thread(print_thread_id,i+1);

  for (auto& th : threads) th.join();

  return 0;
}

 

二、std::unique_lock的用法

std::unique_lock的功能相比std::lock_guard来说,就强大多了,是std::lock_guard的功能超集, 封装了各种加锁操作,阻塞的,非阻塞的,还可以结合条件变量一起使用,基本上对锁的各种操作都封装了,当然了,功能丰富是有代价的,那就是性能和内存开销都比std::lock_guard大得多,所以,需要有选择地使用。

std::unique_lock也会在析构的时候自动解锁,所以说,是std::lock_guard的功能超集。

看看std::unique_lock的构造函数,支持三种加锁模式:

unique_lock( mutex_type& m, std::defer_lock_t t );   //延迟加锁
unique_lock( mutex_type& m, std::try_to_lock_t t ); //尝试加锁
unique_lock( mutex_type& m, std::adopt_lock_t t );   //马上加锁

 

几个主要操作函数:

lock()         //阻塞等待加锁
try_lock()        // 非阻塞等待加锁
try_lock_for()  //在一段时间内尝试加锁
try_lock_until()   //在某个时间点之前尝试加锁

 

接下来,给个例子:

#include <mutex>
#include <thread>
#include <iostream>
#include <vector>
#include <chrono>
 
int main()
{
    int counter = 0;
    std::mutex counter_mutex;
    std::vector<std::thread> threads;
 
    auto worker_task = [&](int id) {
        std::unique_lock<std::mutex> lock(counter_mutex);
        ++counter;
        std::cout << id << ", initial counter: " << counter << '\n';
        lock.unlock();
 
        // don't hold the lock while we simulate an expensive operation
        std::this_thread::sleep_for(std::chrono::seconds(1));
 
        lock.lock();
        ++counter;
        std::cout << id << ", final counter: " << counter << '\n';
    };
 
    for (int i = 0; i < 10; ++i) threads.emplace_back(worker_task, i);
 
    for (auto &thread : threads) thread.join();
}

Output:

0, initial counter: 1
1, initial counter: 2
2, initial counter: 3
3, initial counter: 4
4, initial counter: 5
5, initial counter: 6
6, initial counter: 7
7, initial counter: 8
8, initial counter: 9
9, initial counter: 10
6, final counter: 11
3, final counter: 12
4, final counter: 13
2, final counter: 14
5, final counter: 15
0, final counter: 16
1, final counter: 17
7, final counter: 18
9, final counter: 19
8, final counter: 20

 

posted @ 2018-12-13 00:28  绿色冰点  Views(4293)  Comments(0Edit  收藏  举报