ElasticJob和SpringBoot

本文以在SpringBoot下集成ElasticJob的方式对其进行浅析,仅仅是简单使用,不涉及源码级别研究。

事先必备:

注册中心——zookeeper

简略结构:

 

代码目录结构:

├─.idea
└─src
    └─main
        ├─java
        │  └─com
        │      └─sakura
        │          ├─configuration    --SpringJobScheduler、ZookeeperRegistryCenter
        │          ├─job
        │          │  ├─jobEventConfig    --Job事件监听器
        │          │  └─jobListener    --Job执行监听器
        │          └─properties    --Zookeeper、Job的配置信息
        └─resources    --Zookeeper、Job的配置信息

初始化注册中心:

@Configuration
@Slf4j
public class ZookeeperRegistry {

    @Bean(name = "registryCenter", initMethod = "init")
    public ZookeeperRegistryCenter registryCenter(ZookeeperRegistryProperties registryProperties) {
        ZookeeperConfiguration zookeeperConfiguration = new ZookeeperConfiguration(
                registryProperties.getServerLists(), registryProperties.getNamespace());
        zookeeperConfiguration.setDigest(registryProperties.getDigest());
        zookeeperConfiguration.setBaseSleepTimeMilliseconds(registryProperties.getBaseSleepTimeMilliseconds());
        zookeeperConfiguration.setConnectionTimeoutMilliseconds(registryProperties.getConnectionTimeoutMilliseconds());
        zookeeperConfiguration.setMaxRetries(registryProperties.getMaxRetries());
        zookeeperConfiguration.setMaxSleepTimeMilliseconds(registryProperties.getMaxSleepTimeMilliseconds());
        zookeeperConfiguration.setSessionTimeoutMilliseconds(zookeeperConfiguration.getSessionTimeoutMilliseconds());
        log.info("elasticJob注册中心——Zookeeper初始化成功。serverLists={}。nameSpace={}", registryProperties.getServerLists(), registryProperties.getNamespace());
        return new ZookeeperRegistryCenter(zookeeperConfiguration);
    }
}

定义Job(以SimpleJob为例):

@Slf4j
@Component
public class MySimpleJob implements SimpleJob {
    @Override
    public void execute(ShardingContext shardingContext) {
        log.info("------开始执行定时任务------");
        log.info("jobName:{}", shardingContext.getJobName());
        log.info("taskId:{}", shardingContext.getTaskId());
    }
}

初始化SpringJobScheduler:

@Configuration
@Data
public class SpringJobSchedulerInit {
    private final ZookeeperRegistryCenter registryCenter;
    private final ZookeeperRegistryProperties zookeeperRegistryProperties;
    private final SimpleJobProperties simpleJobProperties;
    private final ElasticJob mySimpleJob;
    private final JobEventConfiguration jobEventConfiguration;

    @Bean(initMethod = "init")
    public SpringJobScheduler springJobScheduler() {
        return new SpringJobScheduler(mySimpleJob, registryCenter, getLiteJobConfiguration(),
          //Job事件追踪,非必填 jobEventConfiguration,
          //Job执行监听器,非必填
new MySimpleJobListener()); } public LiteJobConfiguration getLiteJobConfiguration() { JobCoreConfiguration jobCoreConfiguration = JobCoreConfiguration.newBuilder(simpleJobProperties.getJobName(), simpleJobProperties.getCron() , simpleJobProperties.getShardingTotalCount()) .failover(simpleJobProperties.isFailover()) .jobParameter(simpleJobProperties.getJobParameter()) .misfire(true) .shardingItemParameters(simpleJobProperties.getShardingItemParameters()) .build(); JobTypeConfiguration jobTypeConfiguration = new SimpleJobConfiguration(jobCoreConfiguration, MySimpleJob.class.getName()); return LiteJobConfiguration.newBuilder(jobTypeConfiguration) .jobShardingStrategyClass(simpleJobProperties.getJobShardingStrategyClass()) .maxTimeDiffSeconds(simpleJobProperties.getMaxTimeDiffSeconds()) .monitorExecution(simpleJobProperties.isMonitorExecution()) .monitorPort(simpleJobProperties.getMonitorPort()) .maxTimeDiffSeconds(simpleJobProperties.getMaxTimeDiffSeconds()) //是否要用本地的配置覆盖掉远程的ElasticJob配置 .overwrite(false) .build(); } }

Job事件追踪——存储到数据库:

@Configuration
@Slf4j
@Data
public class JobEventConfig {
    private final DataSource dataSource;

    @Bean
    public JobEventConfiguration jobEventConfiguration() {
        return new JobEventRdbConfiguration(dataSource);
    }
}

Job执行监听器:

@Slf4j
public class MySimpleJobListener implements ElasticJobListener {
    @Override
    public void beforeJobExecuted(ShardingContexts shardingContexts) {
        log.info("Job执行之前:{}", ReflectionToStringBuilder.toString(shardingContexts));
    }

    @Override
    public void afterJobExecuted(ShardingContexts shardingContexts) {
        log.info("Job执行之后:{}", ReflectionToStringBuilder.toString(shardingContexts));
    }
}

properties配置信息:

@ConfigurationProperties(prefix = "simple.job")
@Data
public class SimpleJobProperties {
  //执行Job的cron表达式
private String cron;
  //Job分片总数
private int shardingTotalCount;
  //分片序列号和个性化参数对照表
  //分片序列号和参数用等号分隔,多个键值对用逗号分隔
  //分片序列号从0开始,不可大于或等于Job分片总数
  //如:0=a,1=b,2=c
   private String shardingItemParameters;
  //Job自定义参数
private String jobParameter;
  //是否开启失效转移。
  //只有对monitorExecution的情况下才可以开启失效转移。
  private boolean failover;
  //监控Job执行时状态。每次Job执行时间和间隔时间均非常短的情况,建议不监控作业运行时状态以提升效率, 因为是瞬时状态, 所以无必要监控。
private boolean monitorExecution;
  //作业辅助监控端口
private int monitorPort;
  //最大容忍的本机与注册中心的时间误差秒数,如果时间误差超过配置秒数则作业启动时将抛异常。
  //设置为-1表示不进行检查。
   private int maxTimeDiffSeconds;
  //作业分片策略实现类全路径
private String jobShardingStrategyClass;
  //Job的名称
private String jobName; }
@ConfigurationProperties(prefix = "elastic.job.zk")
@Data
public class ZookeeperRegistryProperties {
  //服务地址,ip:port,多个地址用逗号分隔
    private String serverLists;
  //命名空间
    private String namespace;
  //最大重试次数
    private int maxRetries = 3;
  //连接超时时间,毫秒
    private int connectionTimeoutMilliseconds = 15000;
  //会话超时时间,毫秒
    private int sessionTimeoutMilliseconds = 60000;
  //等待重试的间隔时间的初始值,毫秒
    private int baseSleepTimeMilliseconds = 1000;
  //等待重试的间隔时间的最大值,毫秒
    private int maxSleepTimeMilliseconds = 3000;
  //连接zk的权限令牌,缺省为不需要权限验证。
    private String digest = "";

}
server.port=8099
spring.application.name=elasticJobTest

#ZK
elastic.job.zk.serverLists=192.168.204.140:2181,192.168.204.141:2181,192.168.204.142:2181
elastic.job.zk.namespace=elastic-job

#ElasticJob
simple.job.jobName=simpleJob
simple.job.cron=0/5 * * * * ?
simple.job.shardingTotalCount=3
simple.job.shardingItemParameters=0=beijing,1=shanghai,2=changchun
simple.job.job-parameter=source1=public,source2=private
simple.job.failover=true
simple.job.monitor-execution=true
simple.job.monitor-port=8889
simple.job.max-time-diff-seconds=-1
simple.job.job-sharding-strategy-class=com.dangdang.ddframe.job.lite.api.strategy.impl.AverageAllocationJobShardingStrategy

spring.datasource.url=jdbc:mysql://localhost:3306/elasticjob?useUnicode=true&characterEncoding=utf8&serverTimezone=UTC&useSSL=false
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.username=root
spring.datasource.password=123456

pom.xml依赖:

<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-configuration-processor</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jdbc</artifactId>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>
        <!--  elastic-job dependency -->
        <dependency>
            <groupId>com.dangdang</groupId>
            <artifactId>elastic-job-lite-core</artifactId>
            <version>2.1.5</version>
        </dependency>
        <dependency>
            <groupId>com.dangdang</groupId>
            <artifactId>elastic-job-lite-spring</artifactId>
            <version>2.1.5</version>
        </dependency>
    </dependencies>
View Code

启动类:

@SpringBootApplication(scanBasePackages = {"com.sakura.*"})
@EnableConfigurationProperties(value = {ZookeeperRegistryProperties.class, SimpleJobProperties.class})
public class Application {
    public static void main(String[] args) {
        SpringApplication.run(Application.class);
    }
} 

分片:

ElasticJob提供了三种分片策略。

  1. 基于平均分配算法的分片策略。如果分片不能整除, 则不能整除的多余分片将依次追加到序号小的服务器。
    1. 如果有3台服务器, 分成9片, 则每台服务器分到的分片是: 1=[0,1,2], 2=[3,4,5], 3=[6,7,8]。
    2. 如果有3台服务器, 分成8片, 则每台服务器分到的分片是: 1=[0,1,6], 2=[2,3,7], 3=[4,5]。
    3. 如果有3台服务器, 分成10片, 则每台服务器分到的分片是: 1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8]。
  2. 根据作业名的哈希值奇偶数决定IP升降序算法的分片策略。作业名的哈希值为奇数则IP升序。作业名的哈希值为偶数则IP降序。
    1. 如果有3台服务器, 分成2片, 作业名称的哈希值为奇数, 则每台服务器分到的分片是: 1=[0], 2=[1], 3=[]。
    2. 如果有3台服务器, 分成2片, 作业名称的哈希值为偶数, 则每台服务器分到的分片是: 3=[0], 2=[1], 1=[]。
  3. 根据作业名的哈希值对服务器列表进行轮转的分片策略。

为什么要进行分片:

将一个任务拆分为多个可以并行执行的子任务(分片),每个服务器负责处理一定量的子任务,提高效率。

在本实例代码中一共有三个服务器,进行了三个分片,所以在执行Job时会看到如下的日志打印:

------开始执行定时任务------JobParameter:source1=public,source2=private,ShardingItem:0,ShardingParameter:beijing
------开始执行定时任务------JobParameter:source1=public,source2=private,ShardingItem:2,ShardingParameter:changchun
------开始执行定时任务------JobParameter:source1=public,source2=private,ShardingItem:1,ShardingParameter:shanghai

可以根据Job的ShardingParameter不同做区分,让其处理不同的子任务。

 

posted @ 2020-05-22 18:30  你学会了吗  阅读(608)  评论(0编辑  收藏  举报