手写数字识别
一、代码
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' #不想让警告的信息输出可以添加
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
def mnist_demo():
# 加载数据集
mnist = input_data.read_data_sets('e:/soft/MNIST_DATA',one_hot=True)
images,labels = mnist.train.next_batch(100)
print('images.shape',images.shape,'labels.shape:',labels.shape)
# 1.准备数据
x = tf.placeholder(dtype=tf.float32,shape=[None,784])
y_true = tf.placeholder(dtype=tf.float32,shape=[None,10])
# 2.构建模型 x(None,784) * weight(784,10) + bias = y(None,10)
weight = tf.Variable(initial_value=tf.random_normal(shape=[784,10]))
bias = tf.Variable(initial_value=tf.random_normal(shape=[10]))
y_predict = tf.matmul(x,weight) + bias
# 3.构建损失函数 softmax 交叉熵损失
error = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict))
# 4.优化损失
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(error)
# 初始化变量
init = tf.global_variables_initializer()
# 开始会话
with tf.Session() as sess:
# 运行初始化变量
sess.run(init)
print('训练模型前的损失:%f'%(sess.run(error,feed_dict={x:images,y_true:labels})))
# 训练
for i in range(1000):
op,loss = sess.run([optimizer,error],feed_dict={x:images,y_true:labels})
print('第%d次训练模型的损失:%f'%((i+1),loss))
if __name__ == '__main__':
mnist_demo()
二、结果
······
正是江南好风景