【搜索引擎】 PostgreSQL 10 实时全文检索和分词、相似搜索、模糊匹配实现类似Google搜索自动提示
需求分析
要通过PostgreSQL实现类似Google搜索自动提示的功能,例如要实现一个查询海量数据中的商品名字,每次输入就提示用户各种相关搜索选项,例如淘宝、京东等电商查询
思路
这个功能可以用 PostgreSQL的实时全文检索和分词、相似搜索、前模糊匹配等特性实现。具体策略是,定义一个搜索提示的最大数量。首先通过前模糊匹配查询获取数据,如果未满最大数量,则进行全文检索分词查询补偿,如果全文检索补偿查询的数据未满最大提示数量,最后就加入相识查询的结果。当然这里是一个简单的思路,复杂的还得根据实际需求实现。
构造数据
新建一张商品表,插入一千万条数据,name就是商品名字。
create table goods(id int, name varchar);
insert into goods select generate_series(1,10000000),md5(random()::varchar);
一、前模糊匹配及优化
实现SQL,每次输入就作为前缀模糊查询:
select * from goods where name like '123%' ;
这个简单的前模糊匹配SQL,可以使用B-Tree来加速优化模糊查询。
未建立索引时查询"123%"的商品名字,执行计划显示耗时大约为575ms:
explain (analyze,verbose,timing,costs,buffers) select * from goods where name like '123%' ;
========================================
Gather (cost=1000.00..136516.59 rows=1000 width=37) (actual time=1.390..572.857 rows=2364 loops=1)
Output: id, name
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=83334
-> Parallel Seq Scan on public.goods (cost=0.00..135416.59 rows=417 width=37) (actual time=0.750..528.116 rows=788 loops=3)
Output: id, name
Filter: ((goods.name)::text ~~ '123%'::text)
Rows Removed by Filter: 3332545
Buffers: shared hit=83334
Worker 0: actual time=1.032..511.776 rows=676 loops=1
Buffers: shared hit=24201
Worker 1: actual time=0.145..511.737 rows=755 loops=1
Buffers: shared hit=26101
Planning time: 0.065 ms
Execution time: 573.157 ms
优化1,建立索引(lc_collate方式)
通过lc_collate方式建立索引、也就是B-Tree索引。
- lc_collate (string) 是指报告文本数据排序使用的区域
- lc_collate (string) 是指报告文本数据排序使用的区域
建立索引脚本如下
create index idx_c on goods(name collate "C");
执行计划显示耗时为10ms以内:
explain (analyze,verbose,timing,costs,buffers) select * from goods where name like '123%' collate "C";
优化2,建立索引(操作符类varchar_pattern_ops方式)
建立索引脚本如下
create index idx_varchar on goods(name varchar_pattern_ops);
执行计划显示耗时为5ms以内:
explain (analyze,verbose,timing,costs,buffers) select * from goods where name like '123%' collate "C";
======================================
Bitmap Heap Scan on public.goods (cost=86.60..7681.10 rows=1000 width=37) (actual time=0.740..4.628 rows=2364 loops=1)
Output: id, name
Filter: ((goods.name)::text ~~ '123%'::text)
Heap Blocks: exact=2330
Buffers: shared hit=2351
-> Bitmap Index Scan on idx_varchar (cost=0.00..86.35 rows=2179 width=0) (actual time=0.487..0.487 rows=2364 loops=1)
Index Cond: (((goods.name)::text ~>=~ '123'::text) AND ((goods.name)::text ~<~ '124'::text))
Buffers: shared hit=21
Planning time: 0.139 ms
Execution time: 4.891 ms
二、全文检索和分词(通过gin索引优化加速)
注意:全文检索和下面的相识搜索都需要pg_trgm插件。所以先要执行:
create extension pg_trgm;
具体SQL如下,每次输入空格用&符号代替,最后接:*表示模糊检索。to_tsvector ,to_tsquery参阅postgresql全文检索文档。
SELECT name FROM goods WHERE to_tsvector('English',name) @@ to_tsquery('English','aaa&bbb&cc:*')
通过执行计划查看速度:接近8秒
。。。。。。。
Planning time: 0.129 ms
Execution time: 7986.176 ms
通过gin索引来优化加速,这里to_tsvector('English',name)就是一个表达式索引。
CREATE INDEX name_idx ON goods USING GIN(to_tsvector('English',name));
优化后后的执行计划,速度为13毫秒左右:
explain (analyze,verbose,timing,costs,buffers) SELECT name FROM goods WHERE to_tsvector('English',name) @@ to_tsquery('English','aaa&bbb&cc:*')
=================================================
Bitmap Heap Scan on public.goods (cost=88.04..109.24 rows=5 width=33) (actual time=17.343..17.353 rows=4 loops=1)
Output: name
Recheck Cond: (to_tsvector('english'::regconfig, (goods.name)::text) @@ '''aaa'' & ''bbb'' & ''cc'':*'::tsquery)
Heap Blocks: exact=1
Buffers: shared hit=473
-> Bitmap Index Scan on name_idx (cost=0.00..88.04 rows=5 width=0) (actual time=17.334..17.334 rows=4 loops=1)
Index Cond: (to_tsvector('english'::regconfig, (goods.name)::text) @@ '''aaa'' & ''bbb'' & ''cc'':*'::tsquery)
Buffers: shared hit=472
Planning time: 0.222 ms
Execution time: 13.381 ms
三、相似搜索
具体实现SQL,通过查询结果可以看到越相似,相似度越小,可以看到,在搜索aaa bbb的时候搜索出了aaa b6b,这就是相似搜索。
SELECT name ,name <-> 'aaa bbb' FROM goods WHERE name <-> 'aaa bbb' < 0.7 LIMIT 10
aaa bbb 0
aaa bbb ccc 0.333333
aaa ccc bbb 0.333333
aaa bbb ccc ddd 0.5
aaa b6b ccc 0.666667
aaa bbb ccsdsd 0.466667
aaa 0.5
PostgreSQL扩展知识
在第一种模糊查询中,可以使用关键字ILIKE替换LIKE, ILIKE表示字符串匹配时与大小写无关。这是一个PostgreSQL扩展、并不是标准SQL语法。