一切过往,皆为序章,一切未知,皆为终章。

机器学习--------SVM

#SVM的使用

(结合具体代码说明,代码参考邹博老师的代码)

1、使用numpy中的loadtxt读入数据文件

data:鸢尾花数据

       5.1,3.5,1.4,0.2,Iris-setosa

       4.9,3.0,1.4,0.2,Iris-setosa

       4.7,3.2,1.3,0.2,Iris-setosa

       4.6,3.1,1.5,0.2,Iris-setosa

       5.0,3.6,1.4,0.2,Iris-setosa

读取:

     :path路径

     :dtype读取类型

     :delimiter分隔符

     :converters- A dictionary mapping column number to a function that will parse the column string into the desired value. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also genfromtxt): ``converters = {3: lambda s: float(s.strip() or 0)}``.

     :Default None.

*data

      [[5.1, 3.5, 1.4, 0.2, 0. ], [4.9, 3. , 1.4, 0.2, 0. ], [4.7, 3.2, 1.3, 0.2, 0. ], [4.6, 3.1, 1.5, 0.2, 0. ],[5. , 3.6, 1.4, 0.2, 0. ]]

2、数据分训练测试集

*split用法

     def split(ary,indices_or_sections,axis = 0):

     '''

          Split an array into multiple sub-arrays.

     '''

Parameters-------------

ary : ndarray---Array to be divided into sub-arrays.

indices_or_sections---int or 1-D array  If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible,

an error is raised.

       If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example,``[2, 3]`` would, for ``axis=0``, result in

       ary[:2]

       ary[2:3]

       ary[3:] 

       If an index exceeds the dimension of the array along `axis`,an empty sub-array is returned correspondingly.

axis:int,optional---The axis along which to split,default is 0.

        0按列分割,1按行分割

Return:sub-array:list of ndarrays

           A list of sub-arrays

example:

 

3、训练SVM

 

             kernel='linear'时,为线性核,C越大分类效果越好,但有可能出现过拟合;

             kernel='rbf'时,为高斯核,gamma越小,分类界面越连续;gamma越大,分类界面越分散,分类效果越好(训练集),但是有可能会过拟合。

             decision_function_shape='ovr'时(one v rest),即一个类别与其他类别进行划分;

             decision_function_shape='ovo'时(one v one),即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。

 

*准确率计算方式

 

posted @ 2019-03-04 16:25  爱吃帮帮糖  阅读(191)  评论(0编辑  收藏  举报