数塔
数塔
Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 8 Accepted Submission(s) : 8
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
Output
Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
题意:
数塔,让你找出一条路径上所有数加起来,和最大。
分析:
暴力搜索(深搜):你可以一条一条的找每条路径都将和算出来,再比较算出最大的。
动态规划:更有针对的分而治之,你的每步决策都是由前步所决定,并且具有相同的规律,可以得到一个式子:状态转移方程。
这道题,你会发现,每步实现最大是从分叉口处有两个数,二者选择其中大的来计算,并用dp【】【】数组保存,从底层到顶部,计算到最后,最顶部的就是要求的最大,这解决了贪心不能解决的最优问题。
代码:
/*数塔问题,动态规划*/
#include<stdio.h>
#define MAX 102
int max(int a,int b){/*比较函数,判断哪个大,加哪个*/
if(a>b)
return a;
else
return b;
}
int main(){
int T,n;
int dp[MAX][MAX];
while(scanf("%d",&T)!=EOF){
while(T--){
scanf("%d",&n);
int i,j;
for(i=1;i<=n;i++)
for(j=1;j<=i;j++){/*注意在这个地方是到i停止*/
scanf("%d",&dp[i][j]);/*用二维数组,模拟数塔*/
}
for(i=n;i>0;i--)/*从底层开始加判断*/
for(j=1;j<=i;j++){/*要使最后加的数是最大的,就在每次分叉口处,两个中间选择大的那个加起来,注意别漏掉本来的数*/
dp[i-1][j]=dp[i-1][j]+max(dp[i][j],dp[i][j+1]);/*动态规划,建立动态转移方程,用后一个表征前一个*/
}
printf("%d\n",dp[1][1]);/*最后输出最顶层的那个数即可*/
}
}
return 0;
}