进程池-限制同一时间在CPU上运行的进程数
if __name__=='__main__' : 为了区分你是主动执行这个脚本,还是从别的地方把它当做一个模块去调用。
如果是主动执行,则执行。如果是调用的,则不执行主体。
1. 串行:切记切记:pool.close()必须在pool.join() 之前。
from multiprocessing import Process,Pool import time import os def Foo(i): time.sleep(1) print('in process',os.getpid()) return i + 100 def Bar(arg): print('-->exec done:', arg) if __name__=='__main__': pool = Pool(processes=5) #允许进程池里同时放入5个进程.虽然启用了10个,但是CPU只允许5个同时运行。其他的5个处于挂起状态。 for i in range(10): #pool.apply_async(func=Foo, args=(i,), callback=Bar) #并行 pool.apply(func=Foo, args=(i,)) #串行 print('end') pool.close() pool.join() # 进程池中进程执行完毕后再关闭,如果没有这句,那么程序不等进程执行完就直接关闭了。
运行结果:
in process 13460 in process 5804 in process 8488 in process 10076 in process 12604 in process 13460 in process 5804 in process 8488 in process 10076 in process 12604 end
2. 5个一组并行执行
from multiprocessing import Process,Pool import time import os def Foo(i): time.sleep(1) print('in process',os.getpid()) return i + 100 def Bar(arg): print('-->exec done:', arg) if __name__=='__main__': pool = Pool(processes=5) #允许进程池里同时放入10个进程.虽然启用了5个,但是CPU只允许5个同时运行。其它的都在挂起状态。 for i in range(10): pool.apply_async(func=Foo, args=(i,), callback=Bar) #并行 #pool.apply(func=Foo, args=(i,)) #串行 print('end') pool.close() pool.join() # 进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
运行结果:
end in process 11276 in process 8760 -->exec done: 100 -->exec done: 102 in process 12316 -->exec done: 101 in process 10916 -->exec done: 103 in process 13648 -->exec done: 104 in process 8760 -->exec done: 106 in process 11276 -->exec done: 105 in process 12316 -->exec done: 107 in process 10916 -->exec done: 108 in process 13648 -->exec done: 109
3. 通过进程号得知,运行callback的是主进程
from multiprocessing import Process,Pool
import time
import os
def Foo(i):
time.sleep(1)
print('in process',os.getpid())
return i + 100
def Bar(arg):
print('-->exec done:', arg,os.getpid())
if __name__=='__main__':
pool = Pool(processes=5) #允许进程池里同时放入10个进程.虽然启用了5个,但是CPU只允许5个同时运行。
print("主进程",os.getpid())
for i in range(10):
pool.apply_async(func=Foo, args=(i,), callback=Bar) #并行callback=回调,意思是执行完func=Foo以后,再执行callback=Bar.是主进程执行的回调。
#pool.apply(func=Foo, args=(i,)) #串行
print('end')
pool.close()
pool.join() # 进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
运行结果:每个进程执行完,都执行callback
主进程 5160 end in process 15512 -->exec done: 102 5160 in process 14180 -->exec done: 100 5160 in process 15748 -->exec done: 101 5160 in process 15844 -->exec done: 103 5160 in process 13716 -->exec done: 104 5160 in process 15512 in process 14180 -->exec done: 105 5160 -->exec done: 106 5160 in process 15748 -->exec done: 107 5160 in process 15844 -->exec done: 108 5160 in process 13716 -->exec done: 109 5160