博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

Java——快速排序

Posted on 2020-08-04 16:22  薄辉'静谧  阅读(163)  评论(0编辑  收藏  举报

快速排序

  • 快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

需求:

  • 排序前:
  • 排序后:

排序原理:

1.首先设定一个分界值,通过该分界值将数组分成左右两部分;

2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于 或等于分界值,而右边部分中各元素都大于或等于分界值;

3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

快速排序API设计:

类名 Quick
构造方法 Quick():创建Quick对象
成员方法 1.public static void sort(Comparable[] a):对数组内的元素进行排序
2.private static void sort(Comparable[] a, int lo, int hi):对数组a中从索引lo到索引hi之间的元素进行排序
3.public static int partition(Comparable[] a,int lo,int hi):对数组a中,从索引 lo到索引 hi之间的元素进行分组,并返回分组界限对应的索引
4.private static boolean less(Comparable v,Comparable w):判断v是否小于w
5.private static void exch(Comparable[] a,int i,int j):交换a数组中,索引i和索引j处的值

切分原理

  • 把一个数组切分成两个子数组的基本思想:

    1.找一个基准值,用两个指针分别指向数组的头部和尾部;

    2.先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置;

    3.再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置;

    4.交换当前左边指针位置和右边指针位置的元素;

    5.重复2,3,4步骤,直到左边指针的值大于右边指针的值停止。

快速排序的代码实现:

// 快速排序
public class Quick {
    //对数组内的元素进行排序
    public static void sort(Comparable[] a) {
        int lo = 0;
        int hi = a.length - 1;
        sort(a, lo, hi);
    }
    //对数组a中从索引lo到索引hi之间的元素进行排序
    private static void sort(Comparable[] a, int lo, int hi) {
        //安全性校验
        if (hi <= lo) {
            return;
        }
        //需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组);
        int partition = partition(a, lo, hi);//返回的是分组的分界值所在的索引,分界值位置变换后的索引
        //让左子组有序
        sort(a, lo, partition - 1);
        //让右子组有序
        sort(a, partition + 1, hi);
    }
    //对数组a中,从索引 lo到索引 hi之间的元素进行分组,并返回分组界限对应的索引
    private static int partition(Comparable[] a, int lo, int hi) {
        //确定分界值
        Comparable key = a[lo];
        //定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置
        int left = lo;
        int right = hi + 1;
        //切分
        while (true) {
            //先从右往左扫描,移动right指针,找到一个比分界值小的元素,停止
            while (less(key, a[--right])) {
                if (right == lo) {
                    break;
                }
            }
            //再从左往右扫描,移动left指针,找到一个比分界值大的元素,停止
            while (less(a[++left], key)) {
                if (left == hi) {
                    break;
                }
            }
            //判断 left>=right,如果是,则证明元素扫描完毕,结束循环,如果不是,则交换元素即可
            if (left >= right) {
                break;
            } else {
                exch(a, left, right);
            }
        }
        //交换分界值
        exch(a, lo, right);
        return right;
    }
    /*
          比较v元素是否小于w元素
       */
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }
    /*
   数组元素i和j交换位置
    */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

// 测试代码
public class QuickTest {
    public static void main(String[] args) {
        Integer[] a = {6, 1, 2, 7, 9, 3, 4, 5, 8};
        Quick.sort(a);
        System.out.println(Arrays.toString(a));//{1, 2, 3, 4, 5, 6, 7, 8, 9}
    }
}

快速排序和归并排序的区别

  • 快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。

快速排序的时间复杂度分析

  • 快速排序的一次切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n),但整个快速排序的时间复杂度和切分的次数相关。
  • 最优情况:每一次切分选择的基准数字刚好将当前序列等分。

  • 如果我们把数组的切分看做是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快速排序的时间复杂度为O(nlogn);
  • 最坏情况:每一次切分选择的基准数字是当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2);

  • 平均情况:每一次切分选择的基准数字不是最大值和最小值,也不是中值,这种情况我们也可以用数学归纳法证明,快速排序的时间复杂度为O(nlogn),由于数学归纳法有很多数学相关的知识,容易使我们混乱,所以这里就不对平均情况的时间复杂度做证明了。