剑指offer 07 & LeetCode 105 重建二叉树

题目

题目链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof/


初步题解

先放代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {

        // TreeNode* re = nullptr;
        if(preorder.empty()){
            return nullptr;
        } 
        //根节点
        TreeNode* root = new TreeNode(preorder[0]);
        // root->val = inorder[0];

        vector<int> lPreorder,rPreorder;
        vector<int> lInorder,rInorder;
        int midIndex = 0;

        for(int i = 0; i<inorder.size() ; i++){
            if(inorder[i]==preorder[0]){
                midIndex = i;
                break;
            }
        }
        // 获取左右子树的结点数量
        int leftSize = midIndex;
        int rightSize = preorder.size() - midIndex - 1; 

        // 分开赋值
        for(int i=0 ; i<midIndex ; i++){
            lInorder.push_back(inorder[i]);
            // lPreorder[i]=preorder[i];
        }
        for(int i=midIndex+1 ; i<inorder.size() ; i++){
            rInorder.push_back(inorder[i]);
            // lPreorder[i-midIndex-1]=preorder[i];
        }

        
        for(int i=1 ; i<leftSize+1 ; i++){
            lPreorder.push_back(preorder[i]);
            // lInorder[i-1] = inorder[i];
        }
        for(int i=leftSize+1 ; i<preorder.size() ; i++){
            rPreorder.push_back(preorder[i]);
            // rInorder[i-1] = inorder[i];
        }

        //左子树
        root->left = buildTree(lPreorder,lInorder);
        //右子树
        root->right = buildTree(rPreorder,rInorder);

        return root;
    }
};

思路很简单,先序遍历时,根节点的值会被放在第一个。而中序遍历时,根节点的值刚好把左右子树全部的值分隔开,就是利用这一句话的思路做题。我们只要先按照先序遍历分隔开中序遍历为左子树和右子树的值,然后在分别对左右子树进行递归操作就可以了。

递归退出点的选择:返回的值是树的结点指针,也就是作为父节点的左右子结点来用。这样只要最后不满足条件时返回null就可以了。至于退出条件,就是传入的先序遍历(或后序遍历)所承载的数组为空就可以退出了。

但是这样做结果很慢:

而实际上比较快的只需要24ms,足足慢了10倍,必须要优化。

优化

存在两个优化点。第一个是每次都要搜索root节点在中序遍历中的位置,第二个是每次都要来回创建新的vector来存放中序遍历的左右子树再往下递归,这个创建vector并赋值的过程其实很耗时间。

  • 针对一个点,可以创建一个全局的map来避免每次都查找,不然每一次递归都要寻找根节点的位置。

  • 针对第二个点,选择传index,而不是重新赋值来做,这样节省了大量的时间。

优化后的代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    map<int,int> inorder_map;
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        for(int i=0;i<inorder.size();i++){
            // 方便一下找到大小为i的元素在哪个位置了,省去了遍历浪费的时间
            inorder_map[inorder[i]]=i;
        }
        TreeNode* root = new TreeNode;
        root = Recur_buildTree(preorder, inorder, 0, preorder.size()-1, 0, inorder.size()-1);
        return root;
    }

    TreeNode* Recur_buildTree(vector<int>& preorder, vector<int>& inorder, int pre_start, int pre_end, int in_start, int in_end){
        if(pre_start > pre_end || in_start > in_end){
            return nullptr;
        } 
        //根节点
        TreeNode* root = new TreeNode(preorder[pre_start]);
      
        int mid_index = inorder_map[preorder[pre_start]];
        // 获取左子树的结点数量
        int left_size = mid_index - in_start;

        //左子树
        root->left = Recur_buildTree(preorder, inorder, pre_start + 1, pre_start + left_size, in_start, in_start + left_size -1);
        //右子树
        root->right = Recur_buildTree(preorder, inorder, pre_start + left_size + 1, pre_end, mid_index+1, in_end);

        return root;
    }
};

优化后的速度:

posted @ 2020-07-22 19:42  Molinchn  阅读(159)  评论(0编辑  收藏  举报