collections,random
collections模块
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
namedtuple
我们知道tuple
可以表示不变集合,例如,一个点的二维坐标就可以表示成:
>>> p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple
就派上了用场:
>>> from collections import namedtuple >>> Point = namedtuple('Point', ['x', 'y']) >>> p = Point(1, 2) # p = (x = 1,y = 2) >>> p.x 1 >>> p.y 2
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple
定义:
#namedtuple('名称', [属性list]): Circle = namedtuple('Circle', ['x', 'y', 'r'])
deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
# from collections import deque
# q = deque(['a','b','c','d','e'])
# print(q)
# q.append(666) #添加最右边
# q.append(777)
# q.appendleft(111) #从最左边添加
# q.appendleft(222)
# q.pop() # 从右边删除
# q.popleft() # 从左边删除
# q.popleft()
# print(q)
deque除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
# dic = {}
# dic['name'] = 'alex'
# dic['age'] = '1000'
# dic['sex'] = '男'
# print(dic)
# from collections import OrderedDict
# # od = OrderedDict()
# # od['name'] = 'alex'
# # od['age'] = '1000'
# # od['sex'] = '男'
# # print(od)
# 装逼版:
# d = dict([('a', 1), ('b', 2), ('c', 3)])
# print(d)
# from collections import OrderedDict
# od1 = OrderedDict([('a', 1), ('c', 3), ('b', 2),])
# print(od1)
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict() >>> od['z'] = 1 >>> od['y'] = 2 >>> od['x'] = 3 >>> od.keys() # 按照插入的Key的顺序返回 ['z', 'y', 'x']
defaultdict
有如下值集合 [
11
,
22
,
33
,
44
,
55
,
66
,
77
,
88
,
99
,
90.
..],将所有大于
66
的值保存至字典的第一个key中,将小于
66
的值保存至第二个key的值中。
即: {
'k1'
: 大于
66
,
'k2'
: 小于
66
}
li = [11,22,33,44,55,77,88,99,90] result = {} for row in li: if row > 66: if 'key1' not in result: result['key1'] = [] result['key1'].append(row) else: if 'key2' not in result: result['key2'] = [] result['key2'].append(row) print(result)
li = [11,22,33,44,55,77,88,99,90] result = {} for row in li: if row > 66: if 'key1' not in result: result['key1'] = [] result['key1'].append(row) else: if 'key2' not in result: result['key2'] = [] result['key2'].append(row) print(result)
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
>>> from collections import defaultdict >>> dd = defaultdict(lambda: 'N/A') >>> dd['key1'] = 'abc' >>> dd['key1'] # key1存在 'abc' >>> dd['key2'] # key2不存在,返回默认值 'N/A'
>>> from collections import defaultdict >>> dd = defaultdict(lambda: 'N/A') >>> dd['key1'] = 'abc' >>> dd['key1'] # key1存在 'abc' >>> dd['key2'] # key2不存在,返回默认值 'N/A' 例2
# dic1 = {} #---> dic1={1:5,2:5,3:5.....20:5} # for i in range(1,21): # dic1[i] = 5 # print(dic1) # dic1 = {x:5 for x in range(1,21)} # dic1 = dict.fromkeys(range(1,21),5) # dic1 = defaultdict(lambda :5) # for i in range(1,21): # dic1[i] # print(dic1)
Counter
Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。
c = Counter('abcdeabcdabcaba') print c 输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
random模块
>>> import random #随机小数 >>> random.random() # 大于0且小于1之间的小数 0.7664338663654585 >>> random.uniform(1,3) # 大于1小于3的小数 1.6270147180533838
#随机整数 >>> random.randint(1,5) # 1到5之间的整数 >>> random.randrange(1,10,2) # 1到10之间的整数,每2个取一个 #顾头不顾尾 #随机选择一个返回 >>> random.choice([1,'23',[4,5]]) # 1或者23或者[4,5] #随机选择多个返回,返回的个数为函数的第二个参数 >>> random.sample([1,'23',[4,5]],2) # 列表元素任意2个组合 [[4, 5], '23'] #打乱列表顺序 >>> item=[1,3,5,7,9] >>> random.shuffle(item) # 随机打乱顺序 >>> item [5, 1, 3, 7, 9] >>> random.shuffle(item) >>> item [5, 9, 7, 1, 3]
练习:生成随机验证码
import random def v_code(): code = '' for i in range(5): num=random.randint(0,9) alf=chr(random.randint(65,90)) add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())
import random def v_code(): code = '' for i in range(5): num=random.randint(0,9) alf=chr(random.randint(65,90)) add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())