1、hashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,hashCode是用来在散列存储结构中确定对象的存储地址的;
2、如果两个对象相同,就是适用于equals(java.lang.Object) 方法,那么这两个对象的hashCode一定要相同;
3、如果对象的equals方法被重写,那么对象的hashCode也尽量重写,并且产生hashCode使用的对象,一定要和equals方法中使用的一致,否则就会违反上面提到的第2点;
4、两个对象的hashCode相同,并不一定表示两个对象就相同,也就是不一定适用于equals(java.lang.Object) 方法,只能够说明这两个对象在散列存储结构中,如Hashtable,他们“存放在同一个篮子里”。
5、hashCode是用于查找使用的,而equals是用于比较两个对象的是否相等的。
6、hashCode方法的常规协定:如果根据 equals(Object) 方法,两个对象是相等的,那么在两个对象中的每个对象上调用 hashCode 方法都必须生成相同的整数结果。
7、equals方法不等,并不一定要求hashCode也不想等;但为不相等的对象生成不同整数结果可以提高哈希表的性能。
Google首席Java架构师Joshua Bloch在他的著作《Effective Java》中提出了一种简单通用的hashCode算法
1. 初始化一个整形变量,为此变量赋予一个非零的常数值,比如int result = 17;
2. 选取equals方法中用于比较的所有域,然后针对每个域的属性进行计算:
(1) 如果是boolean值,则计算f ? 1:0
(2) 如果是byte\char\short\int,则计算(int)f
(3) 如果是long值,则计算(int)(f ^ (f >>> 32))
(4) 如果是float值,则计算Float.floatToIntBits(f)
(5) 如果是double值,则计算Double.doubleToLongBits(f),然后返回的结果是long,再用规则(3)去处理long,得到int
(6) 如果是对象应用,如果equals方法中采取递归调用的比较方式,那么hashCode中同样采取递归调用hashCode的方式。 否则需要为这个域计算一个范式,比如当这个域的值为null的时候,那么hashCode 值为0
java.util.Arrays.hashCode(long[])的具体实现:
1 public static int hashCode(long a[]) { 2 if (a == null) 3 return 0; 4 5 int result = 1; 6 for (long element : a) { 7 int elementHash = (int)(element ^ (element >>> 32)); 8 result = 31 * result + elementHash; 9 } 10 11 return result; 12 }
Arrays.hashCode(...)只会计算一维数组元素的hashCode,如果是多维数组,那么需要递归进行hashCode的计算,那么就需要使用Arrays.deepHashCode(Object[])方法。
3. 最后,要如同上面的代码,把每个域的散列码合并到result当中:result = 31 * result + elementHash;
4. 测试,hashCode方法是否符合文章开头说的基本原则,这些基本原则虽然不能保证性能,但是可以保证不出错。
5. 为什么每次需要使用乘法去操作result? 主要是为了使散列值依赖于域的顺序,还是上面的那个例子,Test t = new Test(1, 0)跟Test t2 = new Test(0, 1), t和t2的最终hashCode返回值是不一样的。
6. 为什么是31? 31是个神奇的数字,因为任何数n * 31就可以被JVM优化为 (n << 5) -n,移位和减法的操作效率要比乘法的操作效率高的多。