paper 36 :[教程] 基于GridSearch的svm参数寻优
尊重原创~~~
转载出处:http://www.matlabsky.com/thread-12411-1-1.html
交叉验证(Cross Validation)方法思想简介
http://www.matlabsky.com/forum-v ... -fromuid-18677.html
以下内容摘自《MATLAB 神经网络30个案例分析》第13章:
关于SVM参数的优化选取,国际上并没有公认统一的最好的方法,现在目前常用的方法就是让c和g在一定的范围内取值,对于取定的c和g对于把训练集作为原始数据集利用K-CV方法得到在此组c和g下训练集验证分类准确率,最终取使得训练集验证分类准确率最高的那组c和g做为最佳的参数,但有一个问题就是可能会有多组的c和g对应于最高的验证分类准确率,这种情况怎么处理?这里采用的手段是选取能够达到最高验证分类准确率中参数c最小的那组c和g做为最佳的参数,如果对应最小的c有多组g,就选取搜索到的第一组c和g做为最佳的参数。这样做的理由是:过高的c会导致过学习状态发生,即训练集分类准确率很高而测试集分类准确率很低(分类器的泛化能力降低),所以在能够达到最高验证分类准确率中的所有的成对的c和g中认为较小的惩罚参数c是更佳的选择对象。
以上的寻参思想在libsvm-mat-2.89-3[FarutoUltimate3.0]工具箱中已经实现SVMcgForClass.m (分类问题寻优)、SVMcgForRegress.m (回归问题参数寻优):
函数使用接口介绍如下:
网格参数寻优函数(分类问题):SVMcgForClass
[bestCVaccuracy,bestc,bestg]= SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
输入:
train_label:训练集的标签,格式要求与svmtrain相同。
train:训练集,格式要求与svmtrain相同。
cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8,cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]。
gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8,gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]。
v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3折CV过程。
cstep,gstep:进行参数寻优是c和g的步进大小,即c的取值为2^cmin,2^(cmin+cstep),…,2^cmax,,g的取值为2^gmin,2^(gmin+gstep),…,2^gmax,默认取值为cstep=1,gstep=1。
accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5。
输出:
bestCVaccuracy:最终CV意义下的最佳分类准确率。
bestc:最佳的参数c。
bestg:最佳的参数g。
网格参数寻优函数(回归问题):SVMcgForRegressSVMcgForClass.m源代码:
[bestCVmse,bestc,bestg]=
SVMcgForRegress(train_label,train,
cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)
其输入输出与SVMcgForClass类似,这里不再赘述。
function [bestacc,bestc,bestg] = SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
%SVMcg cross validation by faruto%%
% by faruto
%Email:patrick.lee@foxmail.com QQ:516667408 http://blog.sina.com.cn/faruto BNU
%last modified 2010.01.17%% 若转载请注明:
% faruto and liyang , LIBSVM-farutoUltimateVersion
% a toolbox with implements for support vector machines based on libsvm, 2009.
%
% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
% support vector machines, 2001. Software available at
% http://www.csie.ntu.edu.tw/~cjlin/libsvm%% about the parameters of SVMcg
if nargin < 10
accstep = 4.5;
end
if nargin < 8
cstep = 0.8;
gstep = 0.8;
end
if nargin < 7
v = 5;
end
if nargin < 5
gmax = 8;
gmin = -8;
end
if nargin < 3
cmax = 8;
cmin = -8;
end
%% X:c Y:g cg:CVaccuracy
[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);
[m,n] = size(X);
cg = zeros(m,n);eps = 10^(-4);
%% record acc with different c & g,and find the bestacc with the smallest c
bestc = 1;
bestg = 0.1;
bestacc = 0;
basenum = 2;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) )];
cg(i,j) = svmtrain(train_label, train, cmd);
if cg(i,j) <= 55
continue;
end
if cg(i,j) > bestacc
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end
if abs( cg(i,j)-bestacc )<=eps && bestc > basenum^X(i,j)
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end
end
end
%% to draw the acc with different c & g
figure;
[C,h] = contour(X,Y,cg,70:accstep:100);
clabel(C,h,'Color','r');
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
firstline = 'SVC参数选择结果图(等高线图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);
grid on;figure;
meshc(X,Y,cg);
% mesh(X,Y,cg);
% surf(X,Y,cg);
axis([cmin,cmax,gmin,gmax,30,100]);
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
zlabel('Accuracy(%)','FontSize',12);
firstline = 'SVC参数选择结果图(3D视图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);您可以直接下载:
libsvm-mat-2.89-3[FarutoUltimate3.0]
http://www.matlabsky.com/forum-v ... -fromuid-18677.html
进行使用
更多关于SVM的请看:
关于SVM的那点破事[长期更新整理 by faruto]
http://www.matlabsky.com/forum-v ... -fromuid-18677.html