【2021.02.16】pytorch导论

本次学习来源为:https://www.bilibili.com/video/BV1Y7411d7Ys?p=1

人工智能/机器学习实现的功能

由信息推出结论

由抽象推出预测

由算法替代大脑

image-20210216214153543

监督学习:需要已经打上标签的数据集(labeled dataset)

运用到的算法:贪心、穷举、分治、动态规划

四种学习系统的关系

image-20210216214710472

人工智能>机器学习>表示学习>深度学习

机器学习:基于统计

深度学习:机器学习的分支

如何设计一个学习系统

image-20210216215204155

基于规则的系统:输入->手工设计程序->输出

缺点:不够“智能”,规则会越来越多,以至于越来越难维护

image-20210216215716436

经典机器学习:输入->手工特征提取(将其变为向量/张量)->建立映射关系(找到f(x)函数,使得y=f(x))->输出y

image-20210216220423583

表示学习:将特征提取交给机器,获得label,feature和学习器是分开训练的

维度诅咒:feature越多,需要的数据量越大,采样的数据需要足够多

解决方法:高维映射(降低)到低维,节约成本

image-20210216221125859

深度学习:将特征换成简单特征,指出它的简单特征(例如它是一个语音/它是一张照片)->设计一个额外的层用于提取特征->接入到学习器(神经网络)

对整个模型进行训练,端到端的训练

越来越多的应用需要无结构的数据,所以需要用到深度学习

神经网络

神经是分层的,分表层深层

image-20210216222840647

开始只有单层,后来将神经元连接起来,构成人工神经网络

后来有了反向传播的概念,反向传播的核心是“计算图”

计算图的每一步都进行原子计算(单次的加减乘除)

得到结果是一个前馈过程/正向传播

因为每一步都是原子计算,因此可以对每一部进行偏导计算

例如在下图中,求方框中的公式结果,分别算出路径上的偏导,最后通过链式求导的方法得到结果

到达损失函数路径上的导数求和 ,例如其中e对b的偏导,是两条路径之和所得,

而e对a的偏导只有一条路径,所以只需要路径上的两段偏导之积即可得到结果

在图上传播这个导数,一一算出原子计算的偏导

image-20210216223414634

image-20210216224651874

posted @ 2021-02-16 23:06  Mokou  阅读(86)  评论(0编辑  收藏  举报