SP5971 LCMSUM - LCM Sum
\(\sum\limits_{i=1}^{n}lcm(i,n)\)
\(=\sum\limits_{i=1}^{n}\dfrac{i\times n}{gcd(i,n)}\)
\(=n\times\sum\limits_{d|n}\sum\limits_{i=1}^{n}\dfrac{i}{d}\ [gcd(i,n)=d]\)
同除以\(d\),设\(i=\)原来的\(i/d\)
\(=n\times\sum\limits_{d|n}\sum\limits_{i=1}^{\frac{n}{d}}i\ [gcd(i,\frac{n}{d})=1]\)
因为\(gcd(n,i)=gcd(n,n-i)\),即若\(i\)与\(n\)互质,则\(n-i\)也与\(n\)互质。
所以,\((1,n)\)中,与\(n\)互质的数的总和为 \(\dfrac{\varphi(n)*n}{2}\)
\(=n\times\sum\limits_{d|n} \dfrac{\varphi(\frac{n}{d})*\frac{n}{d}}{2}\)
枚举\(d\)反过来相当于枚举\(\dfrac{n}{d}\)
\(=n\times\sum\limits_{d|n} \dfrac{\varphi(d)*d}{2}\)
预处理出\(\varphi(i)\),利用类似埃氏筛的筛法,用每个数更新它的倍数。复杂度\(O(nlogn)\)。
code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define MogeKo qwq
using namespace std;
const int maxn = 1e6+10;
const int N = 1e6;
int t,prime[maxn],phi[maxn],cnt;
long long n,sum[maxn];
bool vis[maxn];
void Phi() {
phi[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) {
prime[++cnt] = i;
phi[i] = i-1;
}
for(int j = 1; j <= cnt && i*prime[j] <= N; j++) {
vis[i*prime[j]] = true;
if(i % prime[j])
phi[i*prime[j]] = phi[i] * (prime[j]-1);
else {
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
}
}
}
void solve() {
for(long long i = 1; i <= N; i++)
for(long long j = 1; i*j <= N; j++) {
if(i == 1) sum[i*j] += 1;
else sum[i*j] += phi[i]*i/2;
}
}
int main() {
scanf("%d",&t);
Phi();
solve();
while(t--) {
scanf("%lld",&n);
printf("%lld\n",sum[n]*n);
}
return 0;
}