/* 返回顶部 */

Luogu P2261 [CQOI2007]余数求和

gate

\[ans = \sum\limits_{i=1}^{n} k \bmod i \\ = \sum\limits_{i=1}^{n} k - \lfloor \frac{k}{i} \rfloor * i \\ = n*k-\sum\limits_{i=1}^{n}\lfloor \frac{k}{i} \rfloor * i \]

\(i \le \sqrt k\)时,\(\lfloor \frac{k}{i} \rfloor\)最多有\(\sqrt k\)种不同取值;
\(i > \sqrt k\)时,\(\lfloor \frac{k}{i} \rfloor\)的取值范围小于\(\sqrt k\),最多也有\(\sqrt k\)种;
所以一共最多只有\(2\sqrt k\)种,可以用数论分块解决。

注意\(\lfloor \dfrac{k}{\lfloor \frac{k}{i}\rfloor}\rfloor\)可能\(>n\),要取\(min\)

code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define MogeKo qwq
using namespace std;

long long n,k,ans;

int main() {
	scanf("%lld%lld",&n,&k);
	ans = n*k;
	for(long long i = 1,r; i <= n; i = r+1) {
		if(i > k) break;
		r = min(k/(k/i),n);
		ans -= (k/i)*(r-i+1)*(i+r)/2;
	}
	printf("%lld",ans);
	return 0;
}
posted @ 2020-07-19 10:26  Mogeko  阅读(130)  评论(0编辑  收藏  举报