/* 返回顶部 */

Luogu P5410 【模板】扩展 KMP(Z 函数)

\(gate\)

\(\color{#A4A4A4}{谢谢好哥哥帮我写的markdown,哭了}\)

\(exkmp\),也称\(z−algorithm\)
是用来求一个字符串的每个后缀与原串的LCP,即字符串中后缀=前缀的长度。

z[i]表示以第i位为开头的后缀与前缀相等的最大长度。

例如字符串ababaa,可求出它的z函数为603011

这个函数的求法有点类似于\(manacher\)

首先,特别规定z[1]=字符串长度。

接下来从第二位枚举。设i为当前枚举到的字符串位数。

\(l\) 表示当前区间右端点最靠右的后缀的首位(左端点),即i+z[i]最大的i

\(r\) 表示该区间的右端点,即i+z[i]−1

对于当前的\(i\),若有\(i<=r\),即\(i\)\(l\)的区间包括了,

即区间\((i,r)=\)区间\((i−l+1,r−l+1)\)。(都是闭区间)

所以,第\(i\)位与第\(i−l+1\)位相同,有\(z[i]=z[i−l+1]\)

但这段区间也不能超过\(r−l+1\),所以\(z[i]<=r−i+1\)

综上所述,z[i]=min(z[i−l+1],r−i+1)

后面的部分只要一位一位暴力枚举比较即可;

\(i>r\)时,也用暴力枚举求出。

最后不要忘了更新\(l、r\)


对于这道题的第二问(b与a的每一个后缀的LCP长度),需在第一问的基础上求出。

只需要被比较的函数不变,用来比较的函数换成a即可。

设a的第i位开始的与b的LCP为p[i]

注意,在操作p[i]=min(z[i−l+1],r−i+1)时,不要把后面的z[i−l+1]写成p[i−l+1](因为与自身相同的不是a字符串)。

注意这道题不要忘记longlong!(包括后面的1ll

代码如下 吸氧过的…

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define MogeKo qwq
using namespace std;

const int maxn = 2e7+10;

char a[maxn],b[maxn];
int len1,len2,z[maxn],p[maxn];
long long ans;

void get_z(char *s,int n) {
	z[1] = n;
	int l = 0,r = 0;
	for(int i = 2; i <= n; i++) {
		if(i <= r) z[i] = min(z[i-l+1],r-i+1);
		while(i+z[i] <= n && s[i+z[i]] == s[1+z[i]]) z[i]++;
		if(i+z[i]-1 > r) l = i, r = i+z[i]-1;
	}
}

void exkmp(char *s,char *t,int n) {
	int l = 0,r = 0;
	for(int i = 1; i <= n; i++) {
		if(i <= r) p[i] = min(z[i-l+1],r-i+1);
		while(i+p[i] <= n && s[i+p[i]] == t[1+p[i]]) p[i]++;
		if(i+p[i]-1 > r) l = i, r = i+p[i]-1;
	}
}

int main() {
	scanf("%s%s",a+1,b+1);
	len1 = strlen(a+1),len2 = strlen(b+1);
	get_z(b,len2);
	for(int i = 1; i <= len2; i++)
		ans ^= 1ll*i*(z[i]+1);
	printf("%lld\n",ans);
	ans = 0;
	exkmp(a,b,len1);
	for(int i = 1; i <= len1; i++)
		ans ^= 1ll*i*(p[i]+1);
	printf("%lld\n",ans);
	return 0;
}
posted @ 2020-03-13 15:22  Mogeko  阅读(206)  评论(0编辑  收藏  举报