/* 返回顶部 */

Luogu P2880 [USACO07JAN]平衡的阵容Balanced Lineup (ST表模板)

传送门(ST表裸题)

ST表是一种很优雅的算法,用于求静态RMQ

数组l[i][j]表示从i开始,长度为2^j的序列中的最大值

注意事项:

1.核心部分:

    for(int j = 1; (1<<j) <= n; j++)
        for(int i = 1; i+(1<<j)-1 <= n; i++) {
            l[i][j] = max(l[i][j-1],l[i+(1<<(j-1))][j-1]);
            s[i][j] = min(s[i][j-1],s[i+(1<<(j-1))][j-1]);
        }

因为i~j的位数是j-i+1位,所以循环的边界需要-1,而所求的两段区间是不相交的,所以循环内不用-1(或者说,-1又+1了)

2.位运算需要频繁地打括号

 

代码如下

#include<cstdio>
#include<iostream>
using namespace std;

const int maxn = 50005;
int n,q;
int a[maxn],l[maxn][50],s[maxn][50];
int al,as,x,y;

int main() {
    scanf("%d%d",&n,&q);
    for(int i = 1; i <= n; i++){
        scanf("%d",&a[i]);
        l[i][0] = a[i];
        s[i][0] = a[i];
    }

    for(int j = 1; (1<<j) <= n; j++)
        for(int i = 1; i+(1<<j)-1 <= n; i++) {
            l[i][j] = max(l[i][j-1],l[i+(1<<(j-1))][j-1]);
            s[i][j] = min(s[i][j-1],s[i+(1<<(j-1))][j-1]);
        }

    while(q) {
        q--;
        scanf("%d%d",&x,&y);
        int k = 0;
        while(x+(1<<(k+1))<= y)k++;
        al = max(l[x][k],l[y-(1<<k)+1][k]);
        as = min(s[x][k],s[y-(1<<k)+1][k]);
        printf("%d\n",al-as);
    }

    return 0;
}

 

 

posted @ 2018-12-04 19:45  Mogeko  阅读(138)  评论(0编辑  收藏  举报