UVA - 10006 Carmichael Numbers
//挑战P122 #include <iostream> #include <cstring> using namespace std; const int MAXN = 65010; int notprime[MAXN]; int n; typedef long long ll; void init() { memset(notprime, 0, sizeof(notprime)); for (int i = 2; i <= MAXN; i++) //注意此处不是 i * i <= MAXN, 因为现在不是判断一个数是不是素数,而是要用这个范围的素数,通过筛法筛掉所有的合数 if (!notprime[i]) { for (int j = 2 * i; j <= MAXN; j += i) notprime[j] = 1; } } ll mod_pow(ll x, ll n, ll mod) { ll res = 1; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } bool is_Carmichael(int n) { for (int i = 2; i < n; i++) if (mod_pow(i, n, n) != i) return false; return true; } int main() { init(); while (cin >> n) { if (!n) break; if ( notprime[n] && is_Carmichael(n) ) cout << "The number " << n << " is a Carmichael number." << endl; else cout << n << " is normal." << endl; } return 0; }
//挑战P122 //相比法一,改了mod_pow函数,将循环改为了递归 #include <iostream> #include <cstring> using namespace std; const int MAXN = 65010; int notprime[MAXN]; int n; typedef long long ll; void init() { memset(notprime, 0, sizeof(notprime)); for (int i = 2; i <= MAXN; i++) //注意此处不是 i * i <= MAXN, 因为现在不是判断一个数是不是素数,而是要用这个范围的素数,通过筛法筛掉所有的合数 if (!notprime[i]) { for (int j = 2 * i; j <= MAXN; j += i) notprime[j] = 1; } } ll mod_pow(ll x, ll n, ll mod) { if (!n) return 1; ll res = mod_pow( x * x % mod, n / 2, mod); if (n & 1) res = res * x % mod; return res; } bool is_Carmichael(int n) { for (int i = 2; i < n; i++) if (mod_pow(i, n, n) != i) return false; return true; } int main() { init(); while (cin >> n) { if (!n) break; if ( notprime[n] && is_Carmichael(n) ) cout << "The number " << n << " is a Carmichael number." << endl; else cout << n << " is normal." << endl; } return 0; }