mmxingye

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

06 | C++ 线程同步之条件变量

条件变量是 C++11 提供的另外一种用于等待的同步机制,它能阻塞一个或多个线程,直到收到另外一个线程发出的通知或者超时时,才会唤醒当前阻塞的线程。条件变量需要和互斥量配合起来使用,C++11 提供了两种条件变量:

  • condition_variable:需要配合 std::unique_lockstd::mutex 进行 wait 操作,也就是阻塞线程的操作。
  • condition_variable_any:可以和任意带有 lock()、unlock() 语义的 mutex 搭配使用,也就是说有四种:
    • std::mutex:独占的非递归互斥锁
    • std::timed_mutex:带超时的独占非递归互斥锁
    • std::recursive_mutex:不带超时功能的递归互斥锁
    • std::recursive_timed_mutex:带超时的递归互斥锁

条件变量通常用于生产者和消费者模型,大致使用过程如下:

  • 拥有条件变量的线程获取互斥量
  • 循环检查某个条件,如果条件不满足阻塞当前线程,否则线程继续向下执行
    • 产品的数量达到上限,生产者阻塞,否则生产者一直生产。。
    • 产品的数量为零,消费者阻塞,否则消费者一直消费。。。
  • 条件满足之后,可以调用 notify_one() 或者 notify_all() 唤醒一个或者所有被阻塞的线程
    • 由消费者唤醒被阻塞的生产者,生产者解除阻塞继续生产。。。
    • 由生产者唤醒被阻塞的消费者,消费者解除阻塞继续消费。。。

condition_variable


成员函数

condition_variable 的成员函数主要分为两部分:线程等待(阻塞)函数 和线程通知(唤醒)函数,这些函数被定义于头文件 <condition_variable>。

等待函数

wait()

调用 wait() 函数的线程会被阻塞

// ①
void wait (unique_lock<mutex>& lck);
// ②
template <class Predicate>
void wait (unique_lock<mutex>& lck, Predicate pred);
  • 函数①:调用该函数的线程直接被阻塞

  • 函数②:该函数的第二个参数是一个判断条件,是一个返回值为布尔类型的函数

    • 该参数可以传递一个有名函数的地址,也可以直接指定一个匿名函数
    • 表达式返回false当前线程被阻塞,表达式返回true当前线程不会被阻塞,继续向下执行
  • 独占的互斥锁对象不能直接传递给 wait() 函数,需要通过模板类 unique_lock 进行二次处理,通过得到的对象仍然可以对独占的互斥锁对象做如下操作,使用起来更灵活。

  • 如果线程被该函数阻塞,这个线程会释放占有的互斥锁的所有权,当阻塞解除之后这个线程会重新得到互斥锁的所有权,继续向下执行(这个过程是在函数内部完成的,了解这个过程即可,其目的是为了避免线程的死锁)。

wait_for()

wait_for() 函数和 wait() 的功能是一样的,只不过多了一个阻塞时长,假设阻塞的线程没有被其他线程唤醒,当阻塞时长用完之后,线程就会自动解除阻塞,继续向下执行。

template <class Rep, class Period>
cv_status wait_for (unique_lock<mutex>& lck,
const chrono::duration<Rep,Period>& rel_time);
template <class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lck,
const chrono::duration<Rep,Period>& rel_time, Predicate pred);

wait_until()

template <class Clock, class Duration>
cv_status wait_until (unique_lock<mutex>& lck,
const chrono::time_point<Clock,Duration>& abs_time);
template <class Clock, class Duration, class Predicate>
bool wait_until (unique_lock<mutex>& lck,
const chrono::time_point<Clock,Duration>& abs_time, Predicate pred);

通知函数

void notify_one() noexcept;
void notify_all() noexcept;

生产者和消费者模型

我们可以使用条件变量来实现一个同步队列,这个队列作为生产者线程和消费者线程的共享资源,示例代码如下:

#include <iostream>
#include <thread>
#include <mutex>
#include <list>
#include <functional>
#include <condition_variable>
using namespace std;
class SyncQueue
{
public:
SyncQueue(int maxSize) : m_maxSize(maxSize) {}
void put(const int& x)
{
unique_lock<mutex> locker(m_mutex);
// 判断任务队列是不是已经满了
while (m_queue.size() == m_maxSize)
{
cout << "任务队列已满, 请耐心等待..." << endl;
// 阻塞线程
m_notFull.wait(locker);
}
// 将任务放入到任务队列中
m_queue.push_back(x);
cout << x << " 被生产" << endl;
// 通知消费者去消费
m_notEmpty.notify_one();
}
int take()
{
unique_lock<mutex> locker(m_mutex);
while (m_queue.empty())
{
cout << "任务队列已空,请耐心等待。。。" << endl;
m_notEmpty.wait(locker);
}
// 从任务队列中取出任务(消费)
int x = m_queue.front();
m_queue.pop_front();
// 通知生产者去生产
m_notFull.notify_one();
cout << x << " 被消费" << endl;
return x;
}
bool empty()
{
lock_guard<mutex> locker(m_mutex);
return m_queue.empty();
}
bool full()
{
lock_guard<mutex> locker(m_mutex);
return m_queue.size() == m_maxSize;
}
int size()
{
lock_guard<mutex> locker(m_mutex);
return m_queue.size();
}
private:
list<int> m_queue; // 存储队列数据
mutex m_mutex; // 互斥锁
condition_variable m_notEmpty; // 不为空的条件变量
condition_variable m_notFull; // 没有满的条件变量
int m_maxSize; // 任务队列的最大任务个数
};
int main()
{
SyncQueue taskQ(50);
auto produce = bind(&SyncQueue::put, &taskQ, placeholders::_1);
auto consume = bind(&SyncQueue::take, &taskQ);
thread t1[3];
thread t2[3];
for (int i = 0; i < 3; ++i)
{
t1[i] = thread(produce, i+100);
t2[i] = thread(consume);
}
for (int i = 0; i < 3; ++i)
{
t1[i].join();
t2[i].join();
}
return 0;
}

条件变量 condition_variable 类的 wait() 还有一个重载的方法,可以接受一个条件,这个条件也可以是一个返回值为布尔类型的函数,条件变量会先检查判断这个条件是否满足,如果满足条件(布尔值为true),则当前线程重新获得互斥锁的所有权,结束阻塞,继续向下执行;如果不满足条件(布尔值为false),当前线程会释放互斥锁(解锁)同时被阻塞,等待被唤醒。

上面示例程序中的 put()、take() 函数可以做如下修改:

put () 函数

void put(const int& x)
{
unique_lock<mutex> locker(m_mutex);
// 根据条件阻塞线程
m_notFull.wait(locker, [this]() { //注意 this 是不可以少的
return m_queue.size() != m_maxSize;
});
// 将任务放入到任务队列中
m_queue.push_back(x);
cout << x << " 被生产" << endl;
// 通知消费者去消费
m_notEmpty.notify_one();
}

take () 函数

int take()
{
unique_lock<mutex> locker(m_mutex);
m_notEmpty.wait(locker, [this]() {
return !m_queue.empty();
});
// 从任务队列中取出任务(消费)
int x = m_queue.front();
m_queue.pop_front();
// 通知生产者去生产
m_notFull.notify_one();
cout << x << " 被消费" << endl;
return x;
}

修改之后可以发现,程序变得更加精简了,而且执行效率更高了,因为在这两个函数中的 while 循环被删掉了,但是最终的效果是一样的,推荐使用这种方式的 wait() 进行线程的阻塞。

condition_variable_any


成员函数和condition_variable类似

总结:以上介绍的两种互斥锁各自有各自的特点,condition_variable 配合 unique_lock 使用更灵活一些,可以在在任何时候自由地释放互斥锁,而 condition_variable_any 如果和 lock_guard 一起使用必须要等到其生命周期结束才能将互斥锁释放
但是,condition_variable_any 可以和多种互斥锁配合使用,应用场景也更广,而 condition_variable 只能和独占的非递归互斥锁(mutex)配合使用,有一定的局限性。

参考

爱编程的大丙 https://subingwen.cn/cplusplus/

posted on   独立树  阅读(288)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示