Alias Method解决随机类型概率问题(别名算法)

举个例子,游戏中玩家推倒了一个boss,会按如下概率掉落物品:10%掉武器 20%掉饰品 30%掉戒指 40%掉披风。现在要给出下一个掉落的物品类型,或者说一个掉落的随机序列,要求符合上述概率。

一般人会想到的两种解法

第一种算法,构造一个容量为100(或其他)的数组,将其中10个元素填充为类型1(武器),20个元素填充为类型2(饰品)...构造完毕之后,在1到100之间取随机数rand,取到的array[rand]对应的值,即为随机到的类型。这种方法优点是实现简单,构造完成之后生成随机类型的时间复杂度就是O(1),缺点是精度不够高,占用空间大,尤其是在类型很多的时候。

第二种就是一般的离散算法,通过概率分布构造几个点,[10, 30, 60, 100],没错,后面的值就是前面依次累加的概率之和(是不是像斐波那契数列)。在生成1~100的随机数,看它落在哪个区间,比如50在[30,60]之间,就是类型3。在查找时,可以采用线性查找,或效率更高的二分查找,时间复杂度O(logN)。

下面是第二种算法使用二分查找的实现:

<?php
class DiscreteSample
{
    private $cdf;
    private $cnt;
    public function init($pdf)
    {
        $this->cnt = count($pdf);
        if($this->cnt == 0)
            die("pdf size is empty");
        if(abs(array_sum($pdf) - 1) > 0.00001)
            die("pdf sum not equal 1, sum:".array_sum($pdf));
        $this->_pdf2cdf($pdf);
    }
    private function _pdf2cdf($pdf)
    {
        $this->cdf = $pdf;
        for ($i=1; $i < $this->cnt; $i++)
        { 
            $this->cdf[$i] += $this->cdf[$i - 1];
        }
        //因为浮点型精度问题,最后一个值强制为1
        $this->cdf[$this->cnt - 1] = 1;
    }
    public function next_rand()
    {
        $left = 0;
        $right = $this->cnt;
        $random = mt_rand() / mt_getrandmax();
        while ($left < $right - 1) 
        {
            $mid = intval(($left + $right)/2);
            if($mid - 1 >= $this->cnt) break;
            if($random > $this->cdf[$mid - 1])
                $left = $mid;
            else
                $right = $mid;
        }
        return $left;
    }
}
?>

Alias Method(别名方法)

别名算法最终的结果是要构造拼装出一个每一列合都为1的矩形,若每一列最后都要为1,那么要将所有元素都乘以4(概率类型的数量)

此时会有概率大于1的和小于1的,接下来就是构造出某种算法用大于1的补足小于1的,使每种概率最后都为1,注意,这里要遵循一个限制:每列至多是两种概率的组合。

最终,我们得到了两个数组,一个是在下面原始的prob数组[0.4,0.8,0.6,1],另外就是在上面补充的Alias数组,其值代表填充的那一列的序号索引,(如果这一列上不需填充,那么就是NULL),[3,4,4,NULL]。当然,最终的结果可能不止一种,你也可能得到其他结果。

等等,这个问题还没有解决,得到这两个数组之后,随机取其中的一列,比如是第三列,让prob[3]的值与一个随机小数f比较,如果f小于prob[3],那么结果就是3,否则就是Alias[3],即4。

我们可以来简单验证一下,比如随机到第三列的概率是1/4,得到第三列下半部分的概率为1/4*3/5,记得在第一列还有它的一部分,那里的概率为1/4*(1-2/5),两者相加最终的结果还是3/10,符合原来的pdf概率。这种算法初始化较复杂,但生成随机结果的时间复杂度为O(1),是一种性能非常好的算法。

代码示例

<?php
class AliasMethod
{
    private $length;
    private $prob_arr;
    private $alias;
 
    public function __construct ($pdf)
    {
        $this->length = 0;
        $this->prob_arr = $this->alias = array();
        $this->_init($pdf);
    }
    private function _init($pdf)
    {
        $this->length = count($pdf);
        if($this->length == 0)
            die("pdf is empty");
        if(array_sum($pdf) != 1.0)
            die("pdf sum not equal 1, sum:".array_sum($pdf));
 
        $small = $large = array();
        for ($i=0; $i < $this->length; $i++) 
        { 
            $pdf[$i] *= $this->length;
            if($pdf[$i] < 1.0)
                $small[] = $i;
            else
                $large[] = $i;
        }
 
        while (count($small) != 0 && count($large) != 0) 
        {
            $s_index = array_shift($small);
            $l_index = array_shift($large);
            $this->prob_arr[$s_index] = $pdf[$s_index];
            $this->alias[$s_index] = $l_index;
 
            $pdf[$l_index] -= 1.0 - $pdf[$s_index];
            if($pdf[$l_index] < 1.0)
                $small[] = $l_index;
            else
                $large[] = $l_index;
        }
 
        while(!empty($small))
            $this->prob_arr[array_shift($small)] = 1.0;
        while (!empty($large))
            $this->prob_arr[array_shift($large)] = 1.0;
    }
    public function next_rand()
    {
        $column = mt_rand(0, $this->length - 1);
        return mt_rand() / mt_getrandmax() < $this->prob_arr[$column] ? $column : $this->alias[$column];
    }
}
?>

 

posted @ 2018-12-19 00:53  飞翔的贺兰猪  阅读(4591)  评论(0编辑  收藏  举报