L - Ch’s gift HDU - 6162 树链剖分(离线)
Ch’s gift
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2534 Accepted Submission(s): 887
题目链接
http://acm.hdu.edu.cn/showproblem.php?pid=6162
Problem Description
Mr.
Cui is working off-campus and he misses his girl friend very much.
After a whole night tossing and turning, he decides to get to his girl
friend's city and of course, with well-chosen gifts. He knows neither
too low the price could a gift be since his girl friend won't like it,
nor too high of it since he might consider not worth to do. So he will
only buy gifts whose price is between [a,b].
There are n cities in the country and (n-1) bi-directional roads. Each city can be reached from any other city. In the ith city, there is a specialty of price ci Cui could buy as a gift. Cui buy at most 1 gift in a city. Cui starts his trip from city s and his girl friend is in city t. As mentioned above, Cui is so hurry that he will choose the quickest way to his girl friend(in other words, he won't pass a city twice) and of course, buy as many as gifts as possible. Now he wants to know, how much money does he need to prepare for all the gifts?
There are n cities in the country and (n-1) bi-directional roads. Each city can be reached from any other city. In the ith city, there is a specialty of price ci Cui could buy as a gift. Cui buy at most 1 gift in a city. Cui starts his trip from city s and his girl friend is in city t. As mentioned above, Cui is so hurry that he will choose the quickest way to his girl friend(in other words, he won't pass a city twice) and of course, buy as many as gifts as possible. Now he wants to know, how much money does he need to prepare for all the gifts?
Input
There are multiple cases.
For each case:
The first line contains tow integers n,m(1≤n,m≤10^5), representing the number of cities and the number of situations.
The second line contains n integers c1,c2,...,cn(1≤ci≤10^9), indicating the price of city i's specialty.
Then n-1 lines follows. Each line has two integers x,y(1≤x,y≤n), meaning there is road between city x and city y.
Next m line follows. In each line there are four integers s,t,a,b(1≤s,t≤n;1≤a≤b≤10^9), which indicates start city, end city, lower bound of the price, upper bound of the price, respectively, as the exact meaning mentioned in the description above
For each case:
The first line contains tow integers n,m(1≤n,m≤10^5), representing the number of cities and the number of situations.
The second line contains n integers c1,c2,...,cn(1≤ci≤10^9), indicating the price of city i's specialty.
Then n-1 lines follows. Each line has two integers x,y(1≤x,y≤n), meaning there is road between city x and city y.
Next m line follows. In each line there are four integers s,t,a,b(1≤s,t≤n;1≤a≤b≤10^9), which indicates start city, end city, lower bound of the price, upper bound of the price, respectively, as the exact meaning mentioned in the description above
Output
Output m space-separated integers in one line, and the ith number should be the answer to the ith situation.
Sample Input
5 3
1 2 1 3 2
1 2
2 4
3 1
2 5
4 5 1 3
1 1 1 1
3 5 2 3
Sample Output
7 1 4
Source
题意
给你一棵树,每个点有点权,每次求一条路径点权大于等于a小于等于b的点权和,即求vi的和(a<=vi<=b)
题解
我在上次南昌网络赛遇到几乎一模一样的题,当时直接树链剖分+主席数过了,结果这次T了,而且这题数据暴力都能过,我还很不服气的拿暴力对拍,结果真的真的比暴力慢了三四倍吧,想哭了。
在这题上耗了两小时,终于选择向大佬低头,去看题解了,果然我还是太弱了。
以上来自以为蒟蒻的内心独白,接下来假装自己想出来的,讲波题解:
我们令sum(x)表示小于等于x的权值和,那么ans=sum(b)-sum(a-1)。当然对于每条路径,sum(x)都不一样,真的吗。
对于一条路径(l,r,a,b)先拆成两个路径,即(l,r,a-1,-1)和(l,r,b,1),并统称为(l,r,val,id),分别求答案,最后相减即可。
然后我们问题转化成了求路径小于等于val的权值和。
对两条路径(l1,r1,val1,id1) 和(l2,r2,val2,id2) ,如果val1<val2那么第一条路径的答案被第二条路径的答案包含。
接下来定义get_sum(u,v)为点u到v路径的权值和,一开始每个点都等于零。
这样不难想到将所有路径按val 从小到大排序,然后扫描路径数组,每次将树上节点权值小于等于val的所有点加上该点的权值,此路径的ans=get_sum(l,r)。
AC代码
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define ll long long 4 #define N 100050 5 #define INF 123456789 6 int n,m; 7 int tot,last[N]; 8 ll ans[N]; 9 int cnt,fa[N],dp[N],size[N],son[N],rk[N],kth[N],top[N]; 10 struct Query 11 { 12 int l,r,id; ll val; 13 bool operator <(const Query&b)const 14 {return val<b.val;} 15 }a[N],que[N<<1]; 16 struct Edge{int from,to,s;}edges[N<<1]; 17 struct Tree{int l,r;ll sum;}tr[N<<2]; 18 template<typename T>void read(T&x) 19 { 20 ll k=0; char c=getchar(); 21 x=0; 22 while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar(); 23 if (c==EOF)exit(0); 24 while(isdigit(c))x=x*10+c-'0',c=getchar(); 25 x=k?-x:x; 26 } 27 void read_char(char &c) 28 {while(!isalpha(c=getchar())&&c!=EOF);} 29 void AddEdge(int x,int y) 30 { 31 edges[++tot]=Edge{x,y,last[x]}; 32 last[x]=tot; 33 } 34 void dfs1(int x,int pre) 35 { 36 fa[x]=pre; 37 dp[x]=dp[pre]+1; 38 size[x]=1; 39 son[x]=0; 40 for(int i=last[x];i;i=edges[i].s) 41 { 42 Edge &e=edges[i]; 43 if (e.to==pre)continue; 44 dfs1(e.to,x); 45 size[x]+=size[e.to]; 46 if (size[e.to]>size[son[x]])son[x]=e.to; 47 } 48 } 49 void dfs2(int x,int y) 50 { 51 rk[x]=++cnt; 52 kth[cnt]=x; 53 top[x]=y; 54 if (son[x]==0)return; 55 dfs2(son[x],y); 56 for(int i=last[x];i;i=edges[i].s) 57 { 58 Edge &e=edges[i]; 59 if (e.to==fa[x]||e.to==son[x])continue; 60 dfs2(e.to,e.to); 61 } 62 } 63 void bt(int x,int l,int r) 64 { 65 tr[x].l=l; tr[x].r=r; tr[x].sum=0; 66 if (l==r)return; 67 int mid=(l+r)>>1; 68 bt(x<<1,l,mid); 69 bt(x<<1|1,mid+1,r); 70 } 71 void update(int x,int p,ll tt) 72 { 73 if (p<=tr[x].l&&tr[x].r<=p) 74 { 75 tr[x].sum+=tt; 76 return; 77 } 78 int mid=(tr[x].l+tr[x].r)>>1; 79 if (p<=mid)update(x<<1,p,tt); 80 if (mid<p)update(x<<1|1,p,tt); 81 tr[x].sum=tr[x<<1].sum+tr[x<<1|1].sum; 82 } 83 ll query(int x,int l,int r) 84 { 85 if (l<=tr[x].l&&tr[x].r<=r) 86 return tr[x].sum; 87 int mid=(tr[x].l+tr[x].r)>>1; ll ans=0; 88 if (l<=mid)ans+=query(x<<1,l,r); 89 if (mid<r)ans+=query(x<<1|1,l,r); 90 return ans; 91 } 92 ll get_sum(int x,int y) 93 { 94 int fx=top[x],fy=top[y];ll ans=0; 95 while(fx!=fy) 96 { 97 if (dp[fx]<dp[fy])swap(x,y),swap(fx,fy); 98 ans+=query(1,rk[fx],rk[x]); 99 x=fa[fx]; fx=top[x]; 100 } 101 if (dp[x]<dp[y])swap(x,y); 102 ans+=query(1,rk[y],rk[x]); 103 return ans; 104 } 105 void work() 106 { 107 read(n); read(m); 108 for(int i=1;i<=n;i++)read(a[i].val),a[i].id=i; 109 for(int i=1;i<=n-1;i++) 110 { 111 int x,y; 112 read(x); read(y); 113 AddEdge(x,y); 114 AddEdge(y,x); 115 } 116 int num=0; 117 for(int i=1;i<=m;i++) 118 { 119 int l,r,x,y; 120 read(l); read(r); read(x);read(y); 121 que[++num]=Query{l,r,-i,x-1}; 122 que[++num]=Query{l,r,i,y}; 123 } 124 sort(a+1,a+n+1); 125 sort(que+1,que+num+1); 126 dfs1(1,0); 127 dfs2(1,1); 128 bt(1,1,n); 129 int ds=1; 130 for(int i=1;i<=num;i++) 131 { 132 while(ds<=n&&a[ds].val<=que[i].val) 133 { 134 update(1,rk[a[ds].id],a[ds].val); 135 ds++; 136 } 137 ll sum=get_sum(que[i].l,que[i].r); 138 if (que[i].id<0) ans[-que[i].id]-=sum; 139 else ans[que[i].id]+=sum; 140 } 141 printf("%lld",ans[1]); 142 for(int i=2;i<=m;i++)printf(" %lld",ans[i]); 143 printf("\n"); 144 } 145 void clear() 146 { 147 tot=0; cnt=0; 148 memset(last,0,sizeof(last)); 149 memset(ans,0,sizeof(ans)); 150 } 151 int main() 152 { 153 #ifndef ONLINE_JUDGE 154 freopen("aa.in","r",stdin); 155 //freopen("my.out","w",stdout); 156 #endif 157 while(1) 158 { 159 clear(); 160 work(); 161 } 162 }
TLE代码(树链剖分+主席树)
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define ll long long 4 #define N 100050 5 #define INF 123456789 6 int n,m,w[N];ll b[N]; 7 int tot,last[N]; 8 int tree_num,root[N]; 9 int cnt,fa[N],dp[N],size[N],son[N],rk[N],kth[N],top[N]; 10 struct Edge{int from,to,s;}edges[N<<1]; 11 struct Tree{int l,r,ls,rs;ll sum;}tr[2500000]; 12 template<typename T>void read(T&x) 13 { 14 ll k=0; char c=getchar(); 15 x=0; 16 while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar(); 17 if (c==EOF)exit(0); 18 while(isdigit(c))x=x*10+c-'0',c=getchar(); 19 x=k?-x:x; 20 } 21 void read_char(char &c) 22 {while(!isalpha(c=getchar())&&c!=EOF);} 23 void AddEdge(int x,int y) 24 { 25 edges[++tot]=Edge{x,y,last[x]}; 26 last[x]=tot; 27 } 28 void dfs1(int x,int pre) 29 { 30 fa[x]=pre; 31 dp[x]=dp[pre]+1; 32 size[x]=1; 33 son[x]=0; 34 for(int i=last[x];i;i=edges[i].s) 35 { 36 Edge &e=edges[i]; 37 if (e.to==pre)continue; 38 dfs1(e.to,x); 39 size[x]+=size[e.to]; 40 if (size[e.to]>size[son[x]])son[x]=e.to; 41 } 42 } 43 void dfs2(int x,int y) 44 { 45 rk[x]=++cnt; 46 kth[cnt]=x; 47 top[x]=y; 48 if (son[x]==0)return; 49 dfs2(son[x],y); 50 for(int i=last[x];i;i=edges[i].s) 51 { 52 Edge &e=edges[i]; 53 if (e.to==fa[x]||e.to==son[x])continue; 54 dfs2(e.to,e.to); 55 } 56 } 57 void bt(int &x,int l,int r) 58 { 59 x=++tree_num; 60 tr[x].l=l; tr[x].r=r; tr[x].sum=0; 61 if (l==r)return; 62 int mid=(l+r)>>1; 63 bt(tr[x].ls,l,mid); 64 bt(tr[x].rs,mid+1,r); 65 } 66 void add(int &x,int last,int p) 67 { 68 x=++tree_num; 69 tr[x]=tr[last]; 70 tr[x].sum+=b[p]; 71 if (tr[x].l==tr[x].r)return; 72 int mid=(tr[x].l+tr[x].r)>>1; 73 if(p<=mid)add(tr[x].ls,tr[last].ls,p); 74 else add(tr[x].rs,tr[last].rs,p); 75 } 76 ll ask(int x,int y,int p) 77 { 78 if (tr[x].r<=p)return tr[y].sum-tr[x].sum; 79 int mid=(tr[x].l+tr[x].r)>>1;ll ans=0; 80 if (1<=mid)ans+=ask(tr[x].ls,tr[y].ls,p); 81 if (mid<p)ans+=ask(tr[x].rs,tr[y].rs,p); 82 return ans; 83 } 84 ll get_sum(int x,int y,int tt) 85 { 86 int fx=top[x],fy=top[y];ll ans=0; 87 while(fx!=fy) 88 { 89 if (dp[fx]<dp[fy])swap(x,y),swap(fx,fy); 90 ans+=ask(root[rk[fx]-1],root[rk[x]],tt); 91 x=fa[fx]; fx=top[x]; 92 } 93 if (dp[x]<dp[y])swap(x,y); 94 ans+=ask(root[rk[y]-1],root[rk[x]],tt); 95 return ans; 96 } 97 void work() 98 { 99 read(n); read(m); 100 int num=0; 101 for(int i=1;i<=n;i++)read(w[i]),b[++num]=w[i]; 102 b[++num]=INF; 103 for(int i=1;i<=n-1;i++) 104 { 105 int x,y; 106 read(x); read(y); 107 AddEdge(x,y); 108 AddEdge(y,x); 109 } 110 sort(b+1,b+num+1); 111 num=unique(b+1,b+num+1)-b-1; 112 dfs1(1,0); 113 dfs2(1,1); 114 bt(root[0],1,num); 115 for(int i=1;i<=n;i++) 116 { 117 int tt=lower_bound(b+1,b+num+1,w[kth[i]])-b; 118 add(root[i],root[i-1],tt); 119 } 120 for(int i=1;i<=m;i++) 121 { 122 if (i>1)printf(" "); 123 int x,y,l,r; 124 read(x); read(y); read(l); read(r); 125 l=lower_bound(b+1,b+num+1,l)-b-1; 126 r=upper_bound(b+1,b+num+1,r)-b-1; 127 ll ans=get_sum(x,y,r); 128 ans-=get_sum(x,y,l); 129 printf("%lld",ans); 130 } 131 printf("\n"); 132 } 133 void clear() 134 { 135 tot=0; cnt=0; tree_num=0; 136 memset(last,0,sizeof(last)); 137 } 138 int main() 139 { 140 #ifndef ONLINE_JUDGE 141 freopen("aa.in","r",stdin); 142 #endif 143 while(1) 144 { 145 clear(); 146 work(); 147 } 148 }