poj 1764 Dice Contest
题目戳这里。
首先我要吐槽这个题目描述不清。\(2\)对着选手,那选手朝那边?看完别人写的程序后我才知道选手对着目标所在的方向(或左或右)。
然后这道题还是不错的,因为他交给我矩阵乘法不只有常规意义下的矩阵乘法,只要满足结合律,取 \(\min\) 都行。涨姿势了。
这题我们这么做,我们用\(f[i][j][k]\)表示骰子从起始位置到\((i,j)\)且最后状态为\(k\)所需要最小代价,类似于最短路。然后直接求肯定gg,肯定是要用矩阵乘法来加速。
考虑到\(y\)的范围只有\(4\),我们可以将后两维压成一维,就设为\(g[i][j]\)吧。如果我们能够知道第\(i\)列的所有状态到第\(i+1\)列的所有状态的最短路,(设第\((i,j)\)到\((i+1,k)\)的最小代价为\(h[1][j][k]\)),那么我们就可以知道第\(i\)列所有状态到\(i+n(n>1)\)列所有状态的最小代价了(设第\((i,j)\)到\((i+n,k)\)的最小代价为\(h[n][j][k]\))。则
\[h[n][i][j] = \min \{ h[n-1][i][k]+h[1][k][j] \}
\]
然后这个式子很像矩阵乘法的式子(把和改成了\(\min\)),然后满足结合律,故也可用矩阵乘法来加速。
那么怎么求\(h[1][i][j]\)呢?我们可以将列限制在一个范围内,然后跑最短路就行了。
这个题目最坑爹的地方就是状态处理,这个可以参见std。
#include<queue>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
const int Ex = 20,maxn = Ex*96*5; const ll inf = 1LL<<60;
const int help[6][6] = {{-1,2,4,1,3,-1},{3,-1,0,5,-1,2},{1,5,-1,-1,0,4},{4,0,-1,-1,5,1},{2,-1,5,0,-1,3},{-1,3,1,4,2,-1}};
int L[6],X1,Y1,X2,Y2,side[maxn],toit[maxn],next[maxn],len[maxn],cnt; ll dis[Ex*97],f[100],g[100][100]; bool in[Ex*97];
struct Matrix
{
int N,M; ll S[96][96];
inline Matrix(int n = 0,int m = 0,bool sign = false):N(n),M(m)
{
for (int i = 0;i < n;++i) for (int j = 0;j < m;++j) S[i][j] = inf;
if (sign) for (int i = 0;i < n;++i) S[i][i] = 0;
}
friend inline Matrix operator*(const Matrix &a,const Matrix &b)
{
Matrix c(a.N,b.M);
for (int i = 0;i < c.N;++i)
for (int j = 0;j < c.M;++j)
for (int k = 0;k < a.M;++k)
c.S[i][j] = min(c.S[i][j],a.S[i][k]+b.S[k][j]);
return c;
}
};
inline void add(int a,int b,int c) { next[++cnt] = side[a]; side[a] = cnt; toit[cnt] = b; len[cnt] = c; }
inline int getid(int x,int y,int top,int front)
{
int front_id = -1;
for (int i = 0;i < 6;++i)
{
if (i != top&&i != 5-top) ++front_id;
if (i == front) return x*96+y*24+top*4+front_id;
}
return -1;
}
inline void ready()
{
for (int x = 0;x < Ex;++x)
for (int y = 0;y < 4;++y)
for (int top = 0;top < 6;++top)
for (int front = 0;front < 6;++front)
{
if (front == top||front == 5-top) continue;
int left = help[top][front],u = getid(x,y,top,front);
int nx,ny,ntop,nfront,v;
if (x)
{
nx = x-1; ny = y; ntop = 5-left; nfront = front;
v = getid(nx,ny,ntop,nfront); add(u,v,L[ntop]);
}
if (x+1 < Ex)
{
nx = x+1; ny = y; ntop = left; nfront = front;
v = getid(nx,ny,ntop,nfront); add(u,v,L[ntop]);
}
if (y)
{
nx = x; ny = y-1; ntop = 5-front; nfront = top;
v = getid(nx,ny,ntop,nfront); add(u,v,L[ntop]);
}
if (y < 3)
{
nx = x; ny = y+1; ntop = front; nfront = 5-top;
v = getid(nx,ny,ntop,nfront); add(u,v,L[ntop]);
}
}
}
inline void spfa(int source)
{
queue <int> team;
for (int i = 0;i < Ex*96;++i) dis[i] = inf;
dis[source] = 0; in[source] = true; team.push(source);
while (!team.empty())
{
int now = team.front(); team.pop();
for (int i = side[now];i;i = next[i])
{
if (dis[toit[i]] <= dis[now]+len[i]) continue;
dis[toit[i]] = dis[now]+len[i];
if (!in[toit[i]]) team.push(toit[i]),in[toit[i]] = true;
}
in[now] = false;
}
}
inline void record(int x,ll A[])
{
for (int y = 0;y < 4;++y)
for (int top = 0;top < 6;++top)
for (int front = 0;front < 6;++front)
{
if (front == top||front == 5-top) continue;
int id = getid(x,y,top,front); A[id%96] = dis[id];
}
}
inline Matrix qsm(Matrix a,int b)
{
Matrix ret(96,96,true);
for (;b;b >>= 1,a = a*a) if (b&1) ret = ret*a;
return ret;
}
inline ll work()
{
int diff = abs(X1-X2),x = Ex >> 1; ll ans = inf;
spfa(getid(x,Y1,0,1));
if (!diff)
{
for (int top = 0;top < 6;++top)
for (int front = 0;front < 6;++front)
{
if (front == top||front == 5-top) continue;
ans = min(ans,dis[getid(x,Y2,top,front)]);
}
return ans;
}
record(x,f);
for (int y = 0;y < 4;++y)
for (int top = 0;top < 6;++top)
for (int front = 0;front < 6;++front)
{
if (front == top||front == 5-top) continue;
int source = getid(x,y,top,front);
spfa(source); record(x+1,g[source%96]);
}
Matrix A(96,96);
for (int i = 0;i < 96;++i) for (int j = 0;j < 96;++j) A.S[i][j] = g[i][j];
A = qsm(A,diff);
for (int i = 0;i < 96;++i)
for (int j = 0;j < 96;++j)
if (j/24 == Y2) ans = min(ans,f[i]+A.S[i][j]);
return ans;
}
int main()
{
freopen("1764.in","r",stdin);
freopen("1764.out","w",stdout);
for (int i = 0;i < 6;++i) scanf("%d",L+i);
scanf("%d %d %d %d",&X1,&Y1,&X2,&Y2); --Y1,--Y2;
if (X1 > X2) swap(L[2],L[3]);
ready();
cout << work() << endl;
fclose(stdin); fclose(stdout);
return 0;
}
高考结束,重新回归。