【题解】【LibreOJ Round #6】花团 LOJ 534 时间线段树分治 背包
Prelude
题目链接:萌萌哒传送门(/≧▽≦)/
Solution
如果完全离线的话,可以直接用时间线段树分治来做,复杂度\(O(qv \log q)\)。
现在在线了怎么办呢?
这其实是个假在线,因为每个物品的删除时间已经给你了,所以还是直接用时间线段树分治来做。
其实我是重点想谈一下复杂度的,\(O(n^{2} \log n)\)的复杂度居然都可以出到\(15000\),而且居然还跑的飞快?
Code
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <utility>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ldouble;
typedef pair<int,int> pii;
typedef vector<pii>::iterator viter;
const int MAXN = 15010;
const int LOGN = 17;
const int INF = 0x3f3f3f3f;
int _w;
inline void bmin( int &a, int b ) {
a = b < a ? b : a;
}
inline void bmax( int &a, int b ) {
a = b > a ? b : a;
}
int q, maxv, T, lastans;
struct Knapsack {
int f[MAXN];
void init() {
for( int i = 0; i <= maxv; ++i )
f[i] = -INF;
f[0] = 0;
}
void insert( int v, int w ) {
for( int i = maxv-v; i >= 0; --i )
bmax( f[i+v], f[i]+w );
}
const int &operator[]( int i ) const {
return f[i];
}
int &operator[]( int i ) {
return f[i];
}
};
vector<pii> item[MAXN<<2];
Knapsack f[LOGN];
int qv[MAXN];
pii ins;
int ql, qr;
void insert( int o, int L, int R ) {
if( L >= ql && R <= qr ) {
item[o].push_back(ins);
} else {
int M = (L+R)>>1, lc = o<<1, rc = lc|1;
if( ql <= M ) insert(lc, L, M);
if( qr > M ) insert(rc, M+1, R);
}
}
void query( int i, int d ) {
if( qv[i] != -1 ) {
int v = qv[i];
if( f[d][v] < 0 ) {
puts("0 0");
lastans = 0;
} else {
printf( "1 %d\n", f[d][v] );
lastans = T * (f[d][v] ^ 1);
}
}
if( i == q ) return;
int op;
_w = scanf( "%d", &op );
if( op == 1 ) {
int v, w, e;
_w = scanf( "%d%d%d", &v, &w, &e );
v -= lastans, w -= lastans, e -= lastans;
ins = pii(v, w), ql = i+1, qr = e;
insert(1, 0, q);
} else {
_w = scanf( "%d", qv+i+1 );
qv[i+1] -= lastans;
}
}
void solve( int o, int L, int R, int d ) {
for( viter it = item[o].begin(); it != item[o].end(); ++it )
f[d].insert(it->first, it->second);
if( L == R ) {
query(L, d);
} else {
int M = (L+R)>>1, lc = o<<1, rc = lc|1;
f[d+1] = f[d];
solve(lc, L, M, d+1);
f[d+1] = f[d];
solve(rc, M+1, R, d+1);
}
}
int main() {
_w = scanf( "%d%d%d", &q, &maxv, &T );
f[0].init();
memset(qv, -1, sizeof qv);
solve(1, 0, q, 0);
return 0;
}