CNN特征点训练和识别基于python3.7
环境:python3.7
疫情期间在家无聊就学了下cnn对集装箱的箱门特征进行了训练,基本200张图片就可以达到95%准确率
代码如下:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Activation, Dropout, Flatten, Dense
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import load_model
import numpy as np
# define model
model = Sequential()
model.add(Conv2D(input_shape=(150, 150, 3), filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=2, strides=2))
model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=2, strides=2))
model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu'))
model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
# define optimizer
adam = Adam(lr=1e-4)
# define optimizer, value function, calculate accuracy
model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
rescale=1/255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest'
)
test_datagen = ImageDataGenerator(
rescale=1/255
)
batch_size = 32
# create train data
train_generator = train_datagen.flow_from_directory(
'test/train',
target_size=(150, 150),
batch_size=batch_size,
)
# create test data
test_generator = test_datagen.flow_from_directory(
'test/test',
target_size=(150, 150),
batch_size=batch_size,
)
print (train_generator.class_indices)
model.fit_generator(train_generator, epochs=30, validation_data=test_generator, steps_per_epoch=150/batch_size, validation_steps=1)
model.save('dor_cnn.h5')
运行结果:测试下来还是很准确的,优化下模型就可以达到可用级别
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步