KMeans聚类算法Hadoop实现 (二)
package MyKmeans; import java.io.IOException; import java.util.ArrayList; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import java.util.Arrays; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MapReduce { public static class Map extends Mapper<LongWritable, Text, IntWritable, Text>{ //中心集合 ArrayList<ArrayList<Double>> centers = null; //用k个中心 int k = 0; //读取中心 protected void setup(Context context) throws IOException, InterruptedException { centers = Utils.getCentersFromHDFS(context.getConfiguration().get("centersPath"),false); k = centers.size(); } /** * 1.每次读取一条要分类的条记录与中心做对比,归类到对应的中心 * 2.以中心ID为key,中心包含的记录为value输出(例如: 1 0.2 。 1为聚类中心的ID,0.2为靠近聚类中心的某个值) */ protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //读取一行数据 ArrayList<Double> fileds = Utils.textToArray(value); int sizeOfFileds = fileds.size(); double minDistance = 99999999; int centerIndex = 0; //依次取出k个中心点与当前读取的记录做计算 for(int i=0;i<k;i++){ double currentDistance = 0; for(int j=0;j<sizeOfFileds;j++){ double centerPoint = Math.abs(centers.get(i).get(j)); double filed = Math.abs(fileds.get(j)); currentDistance += Math.pow((centerPoint - filed) / (centerPoint + filed), 2); } //循环找出距离该记录最接近的中心点的ID if(currentDistance<minDistance){ minDistance = currentDistance; centerIndex = i; } } //以中心点为Key 将记录原样输出 context.write(new IntWritable(centerIndex+1), value); } } //利用reduce的归并功能以中心为Key将记录归并到一起 public static class Reduce extends Reducer<IntWritable, Text, Text, Text>{ /** * 1.Key为聚类中心的ID value为该中心的记录集合 * 2.计数所有记录元素的平均值,求出新的中心 */ protected void reduce(IntWritable key, Iterable<Text> value,Context context) throws IOException, InterruptedException { ArrayList<ArrayList<Double>> filedsList = new ArrayList<ArrayList<Double>>(); //依次读取记录集,每行为一个ArrayList<Double> for(Iterator<Text> it =value.iterator();it.hasNext();){ ArrayList<Double> tempList = Utils.textToArray(it.next()); filedsList.add(tempList); } //计算新的中心 //每行的元素个数 int filedSize = filedsList.get(0).size(); double[] avg = new double[filedSize]; for(int i=0;i<filedSize;i++){ //求没列的平均值 double sum = 0; int size = filedsList.size(); for(int j=0;j<size;j++){ sum += filedsList.get(j).get(i); } avg[i] = sum / size; } context.write(new Text("") , new Text(Arrays.toString(avg).replace("[", "").replace("]", ""))); } } @SuppressWarnings("deprecation") public static void run(String centerPath,String dataPath,String newCenterPath,boolean runReduce) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); conf.set("centersPath", centerPath); Job job = new Job(conf, "mykmeans"); job.setJarByClass(MapReduce.class); job.setMapperClass(Map.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class); if(runReduce){ //最后依次输出不许要reduce job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); } FileInputFormat.addInputPath(job, new Path(dataPath)); FileOutputFormat.setOutputPath(job, new Path(newCenterPath)); System.out.println(job.waitForCompletion(true)); } public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { String centerPath = "hdfs://localhost:9000/input/centers.txt"; String dataPath = "hdfs://localhost:9000/input/wine.txt"; String newCenterPath = "hdfs://localhost:9000/out/kmean"; int count = 0; while(true){ run(centerPath,dataPath,newCenterPath,true); System.out.println(" 第 " + ++count + " 次计算 "); if(Utils.compareCenters(centerPath,newCenterPath )){ run(centerPath,dataPath,newCenterPath,false); break; } } } }
package MyKmeans; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.Text; import org.apache.hadoop.util.LineReader; public class Utils { //读取中心文件的数据 public static ArrayList<ArrayList<Double>> getCentersFromHDFS(String centersPath,boolean isDirectory) throws IOException{ ArrayList<ArrayList<Double>> result = new ArrayList<ArrayList<Double>>(); Path path = new Path(centersPath); Configuration conf = new Configuration(); FileSystem fileSystem = path.getFileSystem(conf); if(isDirectory){ FileStatus[] listFile = fileSystem.listStatus(path); for (int i = 0; i < listFile.length; i++) { result.addAll(getCentersFromHDFS(listFile[i].getPath().toString(),false)); } return result; } FSDataInputStream fsis = fileSystem.open(path); LineReader lineReader = new LineReader(fsis, conf); Text line = new Text(); while(lineReader.readLine(line) > 0){ ArrayList<Double> tempList = textToArray(line); result.add(tempList); } lineReader.close(); return result; } //删掉文件 public static void deletePath(String pathStr) throws IOException{ Configuration conf = new Configuration(); Path path = new Path(pathStr); FileSystem hdfs = path.getFileSystem(conf); hdfs.delete(path ,true); } public static ArrayList<Double> textToArray(Text text){ ArrayList<Double> list = new ArrayList<Double>(); String[] fileds = text.toString().split(","); for(int i=0;i<fileds.length;i++){ list.add(Double.parseDouble(fileds[i])); } return list; } public static boolean compareCenters(String centerPath,String newPath) throws IOException{ List<ArrayList<Double>> oldCenters = Utils.getCentersFromHDFS(centerPath,false); List<ArrayList<Double>> newCenters = Utils.getCentersFromHDFS(newPath,true); int size = oldCenters.size(); int fildSize = oldCenters.get(0).size(); double distance = 0; for(int i=0;i<size;i++){ for(int j=0;j<fildSize;j++){ double t1 = Math.abs(oldCenters.get(i).get(j)); double t2 = Math.abs(newCenters.get(i).get(j)); distance += Math.pow((t1 - t2) / (t1 + t2), 2); } } if(distance == 0.0){ //删掉新的中心文件以便最后依次归类输出 Utils.deletePath(newPath); return true; }else{ //先清空中心文件,将新的中心文件复制到中心文件中,再删掉中心文件 Configuration conf = new Configuration(); Path outPath = new Path(centerPath); FileSystem fileSystem = outPath.getFileSystem(conf); FSDataOutputStream overWrite = fileSystem.create(outPath,true); overWrite.writeChars(""); overWrite.close(); Path inPath = new Path(newPath); FileStatus[] listFiles = fileSystem.listStatus(inPath); for (int i = 0; i < listFiles.length; i++) { FSDataOutputStream out = fileSystem.create(outPath); FSDataInputStream in = fileSystem.open(listFiles[i].getPath()); IOUtils.copyBytes(in, out, 4096, true); } //删掉新的中心文件以便第二次任务运行输出 Utils.deletePath(newPath); } return false; } }
数据集 http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
运行结果可以与 http://blog.csdn.net/jshayzf/article/details/22739063 的结果做对比(前提是初始的中心相同)