opencl gauss filter优化(三)

1.根据前两次的最终结果:

使用普通buffer,Horizontal 5ms, Vertical 17 ms

使用image bufferHorizontal 9.4ms, Vertical 6.4 ms

那么使用 Horizontal普通buffer,Vertical image buffer 组合方式的话,是不是时间最少?只是Intermediate image仍使用image对象,Horizontal kernel中的写操作需要改变。

结果: Horizontal 的最大local_work_size只能是32, Horizontal 增至8ms, Vertical 6.4ms

 

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

#define r(xc,y) read_imagef( source, sampler,  (int2) (xc, y) ).x

#define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
        write_imagef( dest, (int2) (x+2, y), sum.s2 );write_imagef( dest, (int2) (x+3, y), sum.s3 );\
        write_imagef( dest, (int2) (x+4, y), sum.s4 );write_imagef( dest, (int2) (x+5, y), sum.s5 );\
        write_imagef( dest, (int2) (x+6, y), sum.s6 );write_imagef( dest, (int2) (x+7, y), sum.s7 );\
        write_imagef( dest, (int2) (x+8, y), sum.s8 );write_imagef( dest, (int2) (x+9, y), sum.s9 );\
        write_imagef( dest, (int2) (x+10, y), sum.sa );write_imagef( dest, (int2) (x+11, y), sum.sb );\
        write_imagef( dest, (int2) (x+12, y), sum.sc );write_imagef( dest, (int2) (x+13, y), sum.sd );\
        write_imagef( dest, (int2) (x+14, y), sum.se );write_imagef( dest, (int2) (x+15, y), sum.sf );

__kernel __attribute__((work_group_size_hint(32,1,1)))
void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
                                    __write_only image2d_t   dest,  // Intermediate dest image
                                     const int imgWidth ,                // Image width
                                     const int imgHeight)
{
    const int y = get_global_id(0);
    if(y>=(imgHeight))
        return;
    const uchar m_nRightShiftNum = 8;
    const uchar Rounding = (1 << (m_nRightShiftNum - 1));
    const uchar  m_nFilter[11] = {1,4,8,16,32,134,32,16,8,4,1};

    const int s = 11;
    const int nStart = 5;
    const int nWidth = imgWidth;

    __global const uchar* pInLine = source + y*nWidth;

    int j;
    for(j = 0; j < nStart; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);
            k1 = k1<0 ? -k1 : k1;

            int k2 = (j + nStart - m );
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        //sum = (sum + Rounding) >> 8;
        write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*256) );
    }

    ushort16 line0 =  convert_ushort16(vload16(0,pInLine+j-nStart));
    for ( ; (j+16)<= (nWidth - nStart); j+=16)
    {
        ushort16 line1 =  convert_ushort16(vload16(0,pInLine+j-nStart+16));

        ushort16 temp0;
        ushort16 temp1;
        temp0 = line0;
        temp1.s0123 = line0.sabcd;
        temp1.s45 = line0.sef;
        temp1.s67 = line1.s01;
        temp1.s89abcdef = line1.s23456789;
        ushort16 sum =  ( temp0 + temp1 ) * m_nFilter[0];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s0;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s9;
        sum += ( temp0 +  temp1 ) * m_nFilter[1];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s1;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s8;
        sum += ( temp0 +  temp1 ) * m_nFilter[2];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s2;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s7;
        sum += ( temp0 +  temp1 ) * m_nFilter[3];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s3;
        temp1.s0123456789abcdef = temp1.s00123456789abcde;
        temp1.s0 = line0.s6;
        sum += ( temp0 +  temp1 ) * m_nFilter[4];
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;
        temp0.sf = line1.s4;
        sum += ( temp0 ) * m_nFilter[5];

        line0 = line1;

        float16 sum2 = (convert_float16(sum))/(255.0*256);
        w16(j,y,sum2 );
    }

    for( ; j < nWidth; j ++)
    {
        ushort sum = 0;

        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);

            int k2 = (j + nStart - m );
            k2 = k2 >= nWidth ? 2 * nWidth - 2 - k2 : k2;
            sum += (pInLine[k1] + pInLine[k2])*m_nFilter[m];
        }
        sum += pInLine[j] * m_nFilter[s / 2];
        //sum = (sum + Rounding) >> m_nRightShiftNum;
        write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*256) );
    }

}
View Code

 

2.使用各种办法,最终也只能降到13.7ms,Horizontal 7.5, Vertical 6ms,最终代码如下.

更新HV都 去掉__attribute__ 属性,local_work_size都设置NULL,opencl自己选择,H 的最大local_work_size又变回了64,总时间13ms.因为在LG G4,adreno 418上运行却需要40ms,adreno 418上的local_work_size最大可以是1024,却被强制设成了32.

a.使用mad指令做sum乘加,结果有误差,时间也略增.fma 是无限精度,mad 是快速方法,结果是近似值。

b.使用 pInTemp fisrt 16 bytes,避免重复读取,有0.x ms的优势

c.边界使用了mirror repeat

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

#define r(xc,y) read_imagef( source, sampler,  (int2) (xc, y) ).x

#define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
        write_imagef( dest, (int2) (x+2, y), sum.s2 );write_imagef( dest, (int2) (x+3, y), sum.s3 );\
        write_imagef( dest, (int2) (x+4, y), sum.s4 );write_imagef( dest, (int2) (x+5, y), sum.s5 );\
        write_imagef( dest, (int2) (x+6, y), sum.s6 );write_imagef( dest, (int2) (x+7, y), sum.s7 );\
        write_imagef( dest, (int2) (x+8, y), sum.s8 );write_imagef( dest, (int2) (x+9, y), sum.s9 );\
        write_imagef( dest, (int2) (x+10, y), sum.sa );write_imagef( dest, (int2) (x+11, y), sum.sb );\
        write_imagef( dest, (int2) (x+12, y), sum.sc );write_imagef( dest, (int2) (x+13, y), sum.sd );\
        write_imagef( dest, (int2) (x+14, y), sum.se );write_imagef( dest, (int2) (x+15, y), sum.sf );

//line0 start from j-5,line1 from j-5+16
#define GaussianShift16 {\
        temp0 = line0;\
        temp1.s0123 = line0.sabcd;\
        temp1.s45 = line0.sef;\
        temp1.s67 = line1.s01;\
        temp1.s89abcdef = line1.s23456789;\
        sum =  ( temp0 + temp1 ) * m_nFilter[0];\
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
        temp0.sf = line1.s0;\
        temp1.s0123456789abcdef = temp1.s00123456789abcde;\
        temp1.s0 = line0.s9;\
        sum += ( temp0 +  temp1 ) * m_nFilter[1];\
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
        temp0.sf = line1.s1;\
        temp1.s0123456789abcdef = temp1.s00123456789abcde;\
        temp1.s0 = line0.s8;\
        sum += ( temp0 +  temp1 ) * m_nFilter[2];\
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
        temp0.sf = line1.s2;\
        temp1.s0123456789abcdef = temp1.s00123456789abcde;\
        temp1.s0 = line0.s7;\
        sum += ( temp0 +  temp1 ) * m_nFilter[3];\
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
        temp0.sf = line1.s3;\
        temp1.s0123456789abcdef = temp1.s00123456789abcde;\
        temp1.s0 = line0.s6;\
        sum += ( temp0 +  temp1 ) * m_nFilter[4];\
        temp0.s0123456789abcdef = temp0.s123456789abcdeff;\
        temp0.sf = line1.s4;\
        sum += ( temp0 ) * m_nFilter[5];}

__kernel __attribute__((work_group_size_hint(32,1,1)))
void ImageGaussianFilterHorizontal(__global const uchar* restrict source, // Source image
                                    __write_only image2d_t   dest,  // Intermediate dest image
                                     const int imgWidth ,                // Image width
                                     const int imgHeight)
{
    const int y = get_global_id(0);
    if(y>=(imgHeight))
        return;
    const uchar  m_nFilter[11] = {1,4,8,16,32,134,32,16,8,4,1};

    const int s = 11;
    const int nStart = 5;

    __global const uchar* pInLine = source + y*imgWidth;

    int j;
    uchar pInTemp[16];
    *( (uint4*)(pInTemp) ) = *((__global uint4*)(pInLine)) ;//first 16 bytes
    for(j = 0; j < nStart; j ++)
    {
        ushort sum = 0;
        for (int m = 0; m<s / 2; m++)
        {
            int k1 = (j + m - nStart);
            k1 = k1<0 ? -k1 : k1;

            int k2 = (j + nStart - m );
            sum += (pInTemp[k1] + pInTemp[k2])*m_nFilter[m];
        }
        sum += pInTemp[j] * m_nFilter[s / 2];
        write_imagef( dest, (int2) (j, y), convert_float(sum)/(255.0*256) );
    }

    ushort16 temp0;
    ushort16 temp1;
    ushort16 sum;
    ushort16 line0,line1;
    line0 =  convert_ushort16(*((uchar16*)pInTemp));
    for ( ; j< (imgWidth-16); j+=16)
    {
        line1 = convert_ushort16(vload16(0,pInLine+j-nStart+16));//convert_ushort16( as_uchar16(*((__global uint4*)(pInLine+j-nStart+16))) ) ;

        GaussianShift16
        line0 = line1;

        float16 sum2 = (convert_float16(sum))/(255.0*256);
        w16(j,y,sum2 );
    }

    {
        //last 16 pixel,some pixels may caculate again
        j = imgWidth-16;
        line0 =  convert_ushort16(vload16(0,pInLine+j-nStart));
        //mirror repeat read
        line1.s0123 =  convert_ushort4( vload4(0,pInLine+imgWidth-nStart) );
        line1.s4567 = (ushort4)( pInLine[imgWidth-1],line1.s3,line1.s21 ) ;
        line1.s89 = (ushort2)(line1.s0,line0.sf);

        GaussianShift16
        float16 sum2 = (convert_float16(sum))/(255.0*256);
        w16(j,y,sum2 );
    }
}

__kernel  __attribute__((work_group_size_hint(64,1,1)))
void ImageGaussianFilterVertical(__read_only image2d_t  source, // Source image
                                __write_only image2d_t   dest,
                                 const int imgWidth ,
                                 const int imgHeight)
{
    const int x = get_global_id(0);
    if(x>=(imgWidth))
        return;
    const float m_nFilter[11] = {1/256.0,4/256.0,8/256.0,16/256.0,32/256.0,134/256.0,32/256.0,16/256.0,8/256.0,4/256.0,1/256.0};

#define rv16(x,y) (float16)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3),r(x,y+4),r(x,y+5),r(x,y+6),r(x,y+7),\
                r(x,y+8),r(x,y+9),r(x,y+10),r(x,y+11),r(x,y+12),r(x,y+13),r(x,y+14),r(x,y+15))

#define wv16(x,y,sum) write_imagef( dest, (int2) (x,y), sum.s0 );write_imagef( dest, (int2) (x,y+1), sum.s1 );\
        write_imagef( dest, (int2) (x,y+2), sum.s2 );write_imagef( dest, (int2) (x,y+3), sum.s3 );\
        write_imagef( dest, (int2) (x,y+4), sum.s4 );write_imagef( dest, (int2) (x,y+5), sum.s5 );\
        write_imagef( dest, (int2) (x,y+6), sum.s6 );write_imagef( dest, (int2) (x,y+7), sum.s7 );\
        write_imagef( dest, (int2) (x,y+8), sum.s8 );write_imagef( dest, (int2) (x,y+9), sum.s9 );\
        write_imagef( dest, (int2) (x,y+10), sum.sa );write_imagef( dest, (int2) (x,y+11), sum.sb );\
        write_imagef( dest, (int2) (x,y+12), sum.sc );write_imagef( dest, (int2) (x,y+13), sum.sd );\
        write_imagef( dest, (int2) (x,y+14), sum.se );write_imagef( dest, (int2) (x,y+15), sum.sf );


    float16 temp0;
    float16 temp1;
    float16 sum;
    float16 line0,line1;

    line0 =  rv16(x,-5);
    line0.s0123 = line0.sa987;//mirror repeat
    line0.s4 = line0.s6;
    int j;
    for(j=0;j<imgHeight-16;j+=16){
        line1 =  rv16(x,j-5+16);

        GaussianShift16

        line0 = line1;
        wv16(x,j,sum );
    }
    //last 16 pixel,some pixels may caculate again if imgHeight not 16 bytes align
    j = imgHeight-16;
    line0 =  rv16(x,j-5);
    //mirror repeat read
    const int y = imgHeight-5;
    line1.s0123 =  (float4)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3) );
    line1.s4567 = (float4)( r(x,y+4),line1.s3,line1.s21 );
    line1.s89 = (float2)(line1.s0,line0.sf);

    GaussianShift16
    wv16(x,j,sum );
}
View Code

 

总结:1.local_work_size 对时间的影响比较大,有时使用NULL默认的就可以,有时需要一个个去试。

使用vector 类型,local memory,kernel代码结构 都会对 local_work_size 最大值有影响

2.profile中的wait time可能是读写memory还有其它的等待时间,rum timeALU计算执行的时间。

3.避免对global memory的重复读写,预先缓存下来再用

4.image buffer的读写比普通buffer快,也没有按行按列读写的效率差异.尽量使用image buffer

5.read/write_imageui 并不比 read/write_imagef 快,一般就使用float

6.write read 要慢很多,内存未对齐也会慢些

7.使用vector 读写,计算 都会更快.image buffer虽然是单点读,组合成vector计算也更快.

8.half类型存在精度问题,会引入误差,在这里也不比float

9.如果不确定local_work_size,就设置成NULL,opencl自己选择。

不同的GPU local_work_size最大值不一样,比如这个kernel Adreno 330上最大64,adreno 418上最大1024.


 

 

posted @ 2015-12-11 16:17  mlj318  阅读(1400)  评论(0编辑  收藏  举报