JUC并发—14.Future模式和异步编程分析
大纲
1.FutureTask(Future/Callable)的使用例子
2.FutureTask(Future/Callable)的实现原理
3.FutureTask(Future/Callable)的源码分析
4.CompletableFuture的基本介绍
5.CompletionStage方法及作用说明
6.CompletableFuture的实现原理分析
7.CompletableFuture的核心源码分析
1.FutureTask(Future/Callable)的使用例子
Future/Callable实现了一个异步执行并带有返回结果的功能。Future表示获取一个异步执行的结果,Callable表示一个异步执行的任务,Callable会产生一个结果并给到Future。
Future/Callable的使用例子如下:
public class FutureCallableExample {
static class CalculationCallable implements Callable<Integer> {
private int x;
private int y;
public CalculationCallable(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public Integer call() throws Exception {
System.out.println("开始执行:" + new Date());
TimeUnit.SECONDS.sleep(2);//模拟任务执行的耗时
return x + y;
}
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
CalculationCallable calculationCallable = new CalculationCallable(1, 2);
FutureTask<Integer> futureTask = new FutureTask<>(calculationCallable);
new Thread(futureTask).start();
System.out.println("开始执行futureTask:" + new Date());
Integer rs = futureTask.get();
System.out.println("执行结果:" + rs);
System.out.println("结束执行futureTask:" + new Date());
}
}
首先定义一个CalculationCallable类。该类实现了Callable接口,并重写了call()方法,它的功能就是定义一个具有返回值的任务。
然后用FutureTask声明一个带有返回值的任务,把CalculationCallable作为构造参数传递进去。
FutureTask实现了Future接口和Runnable接口。我们知道线程执行完之后是不可能获得一个返回值的。Future之所以能够获得返回值,是因为在线程执行中做了相关处理。FutureTask就是用来获得线程执行结果的。
接着把FutureTask作为一个任务传入Thread的构造方法,让线程去执行。FutureTask既然实现了Runnable接口,创建FutureTask时又把实现了Callable接口的任务传递到其构造方法中,那么FutureTask的run()方法中会调用Callable接口的call()方法的实现,最终在获得返回值之后保存到某个属性中。
最后使用FutureTask.get()方法来获得返回值,这个get()方法是个阻塞方法。当线程还没有执行完FutureTask之前,主线程会阻塞在get()方法中。直到FutureTask执行结束,主线程才会被唤醒。
2.FutureTask(Future/Callable)的实现原理
(1)FutureTask的类关系
(2)FutureTask的实现核心
(1)FutureTask的类关系
Runnable接口的实现可以被线程执行,Future接口提供了获取线程执行结果的方法。RunnableFuture接口同时继承了Runnable接口和Future接口,而FutureTask类则实现了RunnableFuture接口。
创建FutureTask类实例时,会传入Callable接口的实现类实例作为构造参数,也就是FutureTask类会封装Callable接口的实现类。这样在启动线程后执行FutureTask类重写Runnable接口的run()方法时,FutureTask类实例就会把执行Callable接口call()方法的运行结果保存起来,然后通过Future接口提供的get()方法来获取运行结果。
一.FutureTask的类关系源码
//A cancellable asynchronous computation.
//This class provides a base implementation of Future, with methods to start and cancel a computation,
//query to see if the computation is complete, and retrieve the result of the computation.
//The result can only be retrieved when the computation has completed;
//the get methods will block if the computation has not yet completed.
//Once the computation has completed, the computation cannot be restarted or cancelled
//(unless the computation is invoked using #runAndReset).
//A FutureTask can be used to wrap a Callable or Runnable object.
//Because FutureTask implements Runnable,
//a FutureTask can be submitted to an Executor for execution.
//In addition to serving as a standalone class,
//this class provides protected functionality that may be useful when creating customized task classes.
public class FutureTask<V> implements RunnableFuture<V> {
...
//Creates a FutureTask that will, upon running, execute the given Callable.
public FutureTask(Callable<V> callable) {
if (callable == null) {
throw new NullPointerException();
}
this.callable = callable;
this.state = NEW;//ensure visibility of callable
}
...
}
//A Future that is Runnable.
//Successful execution of the run method causes completion of the Future and allows access to its results.
public interface RunnableFuture<V> extends Runnable, Future<V> {
//Sets this Future to the result of its computation unless it has been cancelled.
void run();
}
//A Future represents the result of an asynchronous computation.
//Methods are provided to check if the computation is complete,
//to wait for its completion, and to retrieve the result of the computation.
//The result can only be retrieved using method get when the computation has completed,
//blocking if necessary until it is ready.
//Cancellation is performed by the cancel method.
//Additional methods are provided to determine if the task completed normally or was cancelled.
//Once a computation has completed, the computation cannot be cancelled.
//If you would like to use a Future for the sake of cancellability but not provide a usable result,
//you can declare types of the form Future<?> and return null as a result of the underlying task.
public interface Future<V> {
//用来取消任务,取消成功则返回true,取消失败则返回false
//mayInterruptIfRunning参数表示是否允许取消正在执行却没有执行完毕的任务,设为true,则表示可以取消正在执行过程中的任务
//如果任务已完成,则无论mayInterruptIfRunning为true还是false,此方法都返回false,即如果取消已经完成的任务会返回false
//如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false
//如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true
boolean cancel(boolean mayInterruptIfRunning);
//表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回true
boolean isCancelled();
//表示任务是否已经完成,若任务完成,则返回true
boolean isDone();
//获取执行结果,如果最终结果还没得出该方法会产生阻塞,直到任务执行完毕返回结果
V get() throws InterruptedException, ExecutionException;
//获取执行结果,如果在指定时间内,还没获取到结果,则抛出TimeoutException
V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;
}
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
二.FutureTask的类关系图
(2)FutureTask的实现核心
一.FutureTask本身是一个线程
通过new Thread(new FutureTask(callable)).start()来启动,必然会执行FutureTask实现Runnable接口的run()方法。
二.Runnable接口的run()方法是没有返回值的
实际上返回值是由Callable接口的call()方法提供,所以调用FutureTask的run()方法,会触发调用Callable的call()方法。
三.通过Future接口的get()方法阻塞式获得返回值
如果在FutureTask的run()方法中调用Callable接口的call()方法执行任务时,需要比较长的时间,那么为了能够正确获得返回值,Future接口的get()方法必须实现阻塞,直到call()方法执行完毕。
四.需要一个队列来保存阻塞的线程
涉及线程阻塞和唤醒,要使用LockSupport来阻塞和唤醒队列中的线程。
3.FutureTask(Future/Callable)的源码分析
(1)FutureTask的核心属性
(2)FutureTask的run()方法
(3)FutureTask的get()方法
(4)FutureTask的finishCompletion()方法
(5)FutureTask的实现原理总结
(1)FutureTask的核心属性
一.state
代表任务在运行过程中的状态(7种)。
二.callable
当前要执行的任务。
三.outcome
任务的执行结果,通过Future.get()获取的值。
四.runner
当前执行callable任务的线程。
五.waiter
用来保存所有等待任务执行结束的线程的单向链表。
public class FutureTask<V> implements RunnableFuture<V> {
//The run state of this task, initially NEW.
//The run state transitions to a terminal state only in methods set, setException, and cancel.
//During completion, state may take on transient values of COMPLETING (while outcome is being set)
//or INTERRUPTING (only while interrupting the runner to satisfy a cancel(true)).
//Transitions from these intermediate to final states use cheaper ordered/lazy writes
//because values are unique and cannot be further modified.
//Possible state transitions:
//NEW(初始状态) -> COMPLETING(正在设置任务结果) -> NORMAL,这是任务正常执行完毕时状态的变更流程
//NEW(初始状态) -> COMPLETING(正在设置任务结果) -> EXCEPTIONAL,这是任务执行异常时状态的变更流程
//NEW(初始状态) -> CANCELLED(任务被取消),这是调用了Future.cancel()方法
//NEW(初始状态) -> INTERRUPTING(正在中断执行任务的线程) -> INTERRUPTED(任务被中断)
//代表任务在运行过程中的状态(7种)
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
//The underlying callable; nulled out after running
//当前要执行的任务
private Callable<V> callable;
//The result to return or exception to throw from get()
//任务的执行结果,通过Future.get()获取的值
private Object outcome;
//The thread running the callable; CASed during run()
//当前执行callable任务的线程
private volatile Thread runner;
//Treiber stack of waiting threads
//用来保存所有等待任务执行结束的线程的单向链表
private volatile WaitNode waiters;
...
}
(2)FutureTask的run()方法
使用线程来执行FutureTask任务时,比如new Thread(new FutureTask(callable)).start(),会回调FutureTask的run()方法。
FutureTask的run()方法的执行流程如下:
首先判断当前状态是否为NEW,并使用CAS设置runner属性为当前线程。如果当前状态不是NEW或者CAS设置失败,则说明已经有其他线程正在执行当前任务了,于是直接返回。然后获取通过构造方法传入的Callable接口的实现类实例callable,接着调用Callable接口的实现类实例callable中的call()方法获得执行结果,最后调用FutureTask的set()方法把执行结果保存到outcome属性中。
public class FutureTask<V> implements RunnableFuture<V> {
...
//代表任务在运行过程中的状态(7种)
private volatile int state;
//当前要执行的任务
private Callable<V> callable;
//任务的执行结果,通过Future.get()获取的值
private Object outcome;
//当前执行callable任务的线程
private volatile Thread runner;
//用来保存所有等待任务执行结束的线程的单向链表
private volatile WaitNode waiters;
private static final sun.misc.Unsafe UNSAFE;
private static final long stateOffset;
private static final long runnerOffset;
private static final long waitersOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = FutureTask.class;
stateOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("state"));
runnerOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("runner"));
waitersOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("waiters"));
} catch (Exception e) {
throw new Error(e);
}
}
public void run() {
//首先判断当前状态是否为NEW,并使用CAS把runner属性设置为当前线程
//如果当前状态不是NEW或者CAS设置失败,说明已经有其他线程正在执行当前任务了,于是直接返回
if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) {
return;
}
try {
//获取通过构造方法传入的Callable接口的实现类实例callable
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
//然后调用callable中的call()方法获得执行结果
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran) {
//调用set()方法把执行结果保存到outcome属性中
set(result);
}
}
} finally {
//runner must be non-null until state is settled to prevent concurrent calls to run()
runner = null;
//state must be re-read after nulling runner to prevent leaked interrupts
int s = state;
if (s >= INTERRUPTING) {
handlePossibleCancellationInterrupt(s);
}
}
}
//Sets the result of this future to the given value unless this future has already been set or has been cancelled.
//This method is invoked internally by the run method upon successful completion of the computation.
protected void set(V v) {
//CAS修改任务状态为COMPLETING
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
//把调用call()方法获取到的结果保存到outcome
outcome = v;
//CAS修改任务状态为NORMAL
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
...
}
(3)FutureTask的get()方法
FutureTask的get()方法的逻辑很简单,如果当前状态不是COMPLETING,就调用awaitDone()方法让当前线程阻塞等待,直到任务执行完成。其中awaitDone()方法的返回值表示任务的状态,当任务进入终止状态后,会调用reports()方法,根据状态类型来决定是返回运行结果还是抛异常。
在FutureTask的awaitDone()方法中会进行自旋。首先如果检测到线程被中断,则把加入等待队列中的线程移除。然后如果发现任务已经进入终止状态,则直接返回任务状态。如果任务正在设置执行结果,则通过Thread.yield()让出当前线程的CPU资源。
当FutureTask.awaitDone()方法第一次调用时,在第一次for循环中会初始化一个WaitNode结点,这个WaitNode结点便保存了调用FutureTask.get()方法的线程。在第二次for循环中会通过CAS按头插法将WaitNode结点插入waiters链表。在之后的for循环中,也就是当前线程已经加入了等待队列后,如果发现任务还没有执行完成,则通过LockSupport的方法阻塞线程。
注意,被阻塞的线程在如下两种情况下会被唤醒:
一.任务执行完成后,在set()方法中调用finishCompletion()方法
二.线程被中断,在awaitDone()方法中执行中断检测if(Thread.interrupted())
public class FutureTask<V> implements RunnableFuture<V> {
...
//代表任务在运行过程中的状态(7种)
private volatile int state;
//当前要执行的任务
private Callable<V> callable;
//任务的执行结果,通过Future.get()获取的值
private Object outcome;
//当前执行callable任务的线程
private volatile Thread runner;
//用来保存所有等待任务执行结束的线程的单向链表
private volatile WaitNode waiters;
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING) {
s = awaitDone(false, 0L);
}
return report(s);
}
//Awaits completion or aborts on interrupt or timeout.
//@param timed true if use timed waits
//@param nanos time to wait, if timed
//@return state upon completion
private int awaitDone(boolean timed, long nanos) throws InterruptedException {
//阻塞超时时间,timed表示是否传递阻塞时间的参数
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {//自旋
//如果检测到线程被中断,则把加入等待队列中的线程移除
if (Thread.interrupted()) {
removeWaiter(q);
//抛出中断异常
throw new InterruptedException();
}
int s = state;
//如果任务已经进入终止状态,则直接返回任务状态
if (s > COMPLETING) {
if (q != null) {
q.thread = null;
}
return s;
} else if (s == COMPLETING) {// cannot time out yet
//如果任务正在设置执行结果,则通过Thread.yield()让出当前线程的CPU资源
Thread.yield();
} else if (q == null) {
//awaitDone()方法被第一次调用时,q == null为true
//此时会初始化一个WaitNode结点并赋值给q,这个WaitNode结点保存了调用FutureTask.get()的线程
q = new WaitNode();
} else if (!queued) {
//awaitDone()方法被第一次调用时,进入的第二次for循环
//便会通过CAS将q结点按头插法插入waiters单向链表中
queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
} else if (timed) {
//如果当前线程加入等待队列后,任务还没有执行完成,则通过LockSupport的方法阻塞线程
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
} else {
LockSupport.park(this);
}
}
}
//Returns result or throws exception for completed task.
//@param s completed state value
@SuppressWarnings("unchecked")
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL) {
return (V)x;
}
if (s >= CANCELLED) {
throw new CancellationException();
}
throw new ExecutionException((Throwable)x);
}
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() {
thread = Thread.currentThread();
}
}
private void removeWaiter(WaitNode node) {
if (node != null) {
node.thread = null;
retry:
for (;;) {//restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null) {
pred = q;
} else if (pred != null) {
pred.next = s;
if (pred.thread == null) {// check for race
continue retry;
}
} else if (!UNSAFE.compareAndSwapObject(this, waitersOffset, q, s)) {
continue retry;
}
}
break;
}
}
}
...
}
(4)FutureTask的finishCompletion()方法
当Callable任务执行完成后,FutureTask的set()方法会调用finishCompletion()方法唤醒链表中的阻塞线程。
public class FutureTask<V> implements RunnableFuture<V> {
...
//代表任务在运行过程中的状态(7种)
private volatile int state;
//当前要执行的任务
private Callable<V> callable;
//任务的执行结果,通过Future.get()获取的值
private Object outcome;
//当前执行callable任务的线程
private volatile Thread runner;
//用来保存所有等待任务执行结束的线程的单向链表
private volatile WaitNode waiters;
...
//Removes and signals all waiting threads, invokes done(), and nulls out callable.
private void finishCompletion() {
for (WaitNode q; (q = waiters) != null;) {
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null) {
break;
}
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null;
}
...
}
(5)FutureTask的实现原理总结
FutureTask实现了Runnable和Future接口,FutureTask表示一个带有状态及执行结果的任务,而任务执行结果的获取是基于阻塞的方式来实现的。
在Callable接口的call()方法没有返回结果之前,其他线程调用FutureTask的get()方法获取结果时,FutureTask会构建一个waiters链表,把当前线程存储到链表中并通过LockSupport进行阻塞,直到call()方法返回后把结果设置到outcome属性以及唤醒阻塞的线程。
(6)FutureTask的局限性
局限性一:
在获取异步任务的执行结果时,要么调用get()方法阻塞等待返回结果,要么耗费CPU资源通过轮询调用FutureTask.isDone()方法来判断任务的执行状态,然后再调用get()方法获取返回结果。
局限性二:
FutureTask没有提供通知机制,没有办法知道任务什么时候执行完成。
4.CompletableFuture的基本介绍
(1)CompletableFuture的介绍
(2)CompletableFuture的类关系图
(3)CompletableFuture的方法说明
(1)CompletableFuture的介绍
CompletableFuture针对Future做了改进,也就是在异步任务执行完成后,主线程如果需要依赖该任务的执行结果来继续后面的操作,则可以不用通过等待来实现,只需向CompletableFuture传入一个回调对象。当异步任务执行完毕后,便会自动调用该回调对象(异步回调通知功能)。
CompletableFuture还提供了非常强大的功能。对于回调对象的执行,可以放到非任务线程中,也可以放到任务线程中。CompletableFuture提供了函数式编程能力,简化了异步编程的复杂性。还提供了多个CompletableFuture的组合与转化功能。
(2)CompletableFuture的类关系
CompletableFuture类实现了Future和CompletionStage这两个接口,其中Future接口提供了获取任务执行结果及任务执行状态的功能,CompletionStage接口表示任务执行的一个阶段。CompletionStage接口定义了很多方法,比如thenApply()、thenAccept()等。通过这些方法可以实现多个任务之间的时序关系,比如串行、并行、聚合等。
因此CompletableFuture既提供了Future阻塞式获取结果 + 任务状态的功能,也提供了CompletionStage的任务执行后触发回调 + 多个任务聚合的功能。
(3)CompletableFuture的方法说明
一.构建CompletableFuture的静态方法
二.runAsync()和supplyAsync()静态方法
三.allOf()和anyOf()静态方法
四.主动获取任务执行结果的方法
一.构建CompletableFuture的静态方法
CompletableFuture提供了4个静态方法来构建一个异步事件。由于传递进CompletableFuture这4个方法的任务需要异步执行,所以默认会使用ForkJoinPool.commonPool()提供的线程池来执行异步任务,当然也可以自定义一个线程池传入这些静态方法来执行异步任务。
//A Future that may be explicitly completed (setting its value and status),
//and may be used as a CompletionStage,
//supporting dependent functions and actions that trigger upon its completion.
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
...
//Returns a new CompletableFuture that is asynchronously completed
//by a task running in the ForkJoinPool#commonPool()
//with the value obtained by calling the given Supplier.
//@param supplier a function returning the value to be used to complete the returned CompletableFuture
//@param <U> the function's return type
//@return the new CompletableFuture
//带有返回值的异步执行方法,传入一个函数式接口,返回一个新的CompletableFuture对象
//默认使用ForkJoinPool.commonPool()作为线程池执行异步任务
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
return asyncSupplyStage(asyncPool, supplier);
}
//Returns a new CompletableFuture that is asynchronously completed
//by a task running in the given executor with the value obtained by calling the given Supplier.
//@param supplier a function returning the value to be used to complete the returned CompletableFuture
//@param executor the executor to use for asynchronous execution
//@param <U> the function's return type
//@return the new CompletableFuture
//带有返回值的异步执行方法,传入一个函数式接口 + 一个线程池,返回一个新的CompletableFuture对象
//多了一个Executor参数,表示使用自定义线程池来执行任务
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor) {
return asyncSupplyStage(screenExecutor(executor), supplier);
}
static <U> CompletableFuture<U> asyncSupplyStage(Executor e, Supplier<U> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<U> d = new CompletableFuture<U>();
e.execute(new AsyncSupply<U>(d, f));
return d;
}
//Returns a new CompletableFuture that is asynchronously completed
//by a task running in the ForkJoinPool#commonPool() after it runs the given action.
//@param runnable the action to run before completing the returned CompletableFuture
//@return the new CompletableFuture
//不带返回值的异步执行方法,传入一个Runnable参数,返回一个新的CompletableFuture对象
//默认使用ForkJoinPool.commonPool()作为线程池执行异步任务
public static CompletableFuture<Void> runAsync(Runnable runnable) {
return asyncRunStage(asyncPool, runnable);
}
//Returns a new CompletableFuture that is asynchronously completed
//by a task running in the given executor after it runs the given action.
//@param runnable the action to run before completing the returned CompletableFuture
//@param executor the executor to use for asynchronous execution
//@return the new CompletableFuture
//不带返回值的异步执行方法,传入一个Runnable参数 + 一个线程池,返回一个新的CompletableFuture对象
//多了一个Executor参数,表示使用自定义线程池来执行任务
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor) {
return asyncRunStage(screenExecutor(executor), runnable);
}
static CompletableFuture<Void> asyncRunStage(Executor e, Runnable f) {
if (f == null) throw new NullPointerException();
CompletableFuture<Void> d = new CompletableFuture<Void>();
e.execute(new AsyncRun(d, f));
return d;
}
...
}
二.runAsync()和supplyAsync()静态方法
下面使用runAsync()方法来构建一个异步执行事件,由于runAsync()方法是没有返回值的,所以get()这个阻塞等待任务执行完成的方法返回的还是null。
CompletableFuture cf = CompletableFuture.runAsync(() -> {
System.out.println(Thread.currentThread().getName() + ":异步执行一个任务");
});
cf.get();//阻塞等待任务执行完成
下面使用supplyAsync()方法来构建一个异步执行事件,由于supplyAsync()方法具有返回值,所以get()方法会返回"supplyAsync"。
CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
System.out.println("supplyAsync");
});
cf.get();//阻塞等待任务执行完成
三.allOf()和anyOf()静态方法
allOf()方法接收多个CompletableFuture的无返回值的任务。当所有的任务都执行结束后,返回一个新的CompletableFuture对象。
allOf()方法相当于实现了等待多个任务执行结束后再返回的功能,并且接收的CompletableFuture任务是通过runAsync()方法构建的。之所以无返回值,是因为当多个任务都具有返回值时get()方法不知取哪个。
public class CompletableFutureExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CompletableFuture<Void> v1 = CompletableFuture.runAsync(() -> {
System.out.println("任务v1没有返回值");
});
CompletableFuture<Void> v2 = CompletableFuture.runAsync(() -> {
System.out.println("任务v2没有返回值");
});
//通过join()方法让主线程阻塞等待allOf()方法中的所有任务都执行完成后再继续执行
CompletableFuture.allOf(v1, v2).join();
}
}
anyOf()方法接收多个CompletableFuture的带有返回值的任务。当任何一个任务执行完成后,返回一个新的CompletableFuture对象。
anyOf()方法实现了等待多个任务中任何一个任务执行结束便返回的功能,接收的CompletableFuture任务是通过supplyAsync()方法构建的。
public class CompletableFutureExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CompletableFuture<String> v1 = CompletableFuture.supplyAsync(() -> {
return "任务v1的返回值";
});
CompletableFuture<String> v2 = CompletableFuture.supplyAsync(() -> {
return "任务v2的返回值";
});
//通过join()方法让主线程阻塞等待anyOf()方法中的任何一个任务执行完成后再继续执行
CompletableFuture.anyOf(v1, v2).thenAccept(value -> System.out.println(value)).join();
}
}
四.主动获取任务执行结果的方法
由于CompletableFuture实现了Future接口,所以它可以像Future那样主动通过阻塞或轮询的方式来获得执行结果。比如可以通过get()方法阻塞式获取异步任务的执行结果(可中断),比如也可以通过join()方法阻塞式获取异步任务的执行结果(不可中断),此外通过complete()方法可实现线程间的数据传递 + 唤醒被get()阻塞的线程。
public class CompleteMethodExample {
public static class ClientThread implements Runnable {
private CompletableFuture completableFuture;
public ClientThread(CompletableFuture completableFuture) {
this.completableFuture = completableFuture;
}
@Override
public void run() {
log.info(Thread.currentThread().getName() + ":" + completableFuture.get());
}
}
public static void main(String[] args) {
//在ClientThread线程中使用completableFuture.get()获取返回值时,
//由于传入的cf并没有使用runAsync()等方法构建具体的异步任务,
//所以ClientThread线程中的completableFuture.get()方法必然会阻塞;
CompletableFuture cf = new CompletableFuture();
new Thread(new ClientThread(cf)).start();
new Thread(new ClientThread(cf)).start();
System.out.println("此时两个客户端线程正在被get()方法阻塞");
//通过compelete()方法来完成cf任务,并且设置了任务的返回结果为"finish"
cf.complete("finish");//此时会将值为"finish"传入两个线程,并唤醒这两个线程
}
}
5.CompletionStage方法及作用说明
(1)CompletionStage示例
(2)CompletionStage的方法概述
(3)有传参但没返回值的方法
(4)有传参且有返回值的方法
(5)没传参也没返回值的方法
(6)组合起来串行执行的方法
(7)异常处理方法
(1)CompletionStage示例
CompletionStage表示任务执行的一个阶段,每个异步任务都会返回一个新的CompletionStage对象,可针对多个CompletionStage对象进行串行、并行、聚合等操作。简单来说,CompletionStage就是实现异步任务执行后的自动回调功能。
下面的CompletionStage例子:首先需要调用一个远程方法获得结果,然后把返回结果保存到数据库。所以代码中先定义一个异步任务处理远程调用,并返回CompletionStage,接着调用thenAccept()方法把第一步的执行结果保存到数据库中。
public class CompletionStageExample {
public static void main(String[] args) {
CompletionStage<String> cf = CompletableFuture.supplyAsync(() -> "远程调用的返回结果");
cf.thenAccept(result -> {
System.out.println("第一个异步任务的返回值是:" + result);
System.out.println("把result保存到数据库");
});
}
}
可以看见和Future明显不一样的地方就是:thenAccept()方法中传入的回调对象是第一个异步任务执行完后自动触发的,不需要像Future那样去阻塞当前线程等待返回结果,还可以使用thenAcceptAsync()方法让保存到数据库的任务使用独立线程池。
(2)CompletionStage的方法概述
CompletionStage总共提供了38个方法来实现多个任务的串行、并行、聚合等功能,这些方法可以按功能进行如下的分类:
一.有传参但没返回值的方法
二.有传参且有返回值的方法
三.没传参也没返回值的方法
四.组合起来串行执行的方法
五.异常处理的方法
注意:Accept关键字有传参没有返回值,Run关键字没传参没返回值。
(3)有传参但没返回值的方法
有传参但没返回值的方法就是:用上一个异步任务的结果作为当前方法的参数进行下一步运算,并且当前方法会产生一个新的没有返回值的CompletionStage对象。有传参但没返回值的方法都包含Accept关键字。
一.依赖单个CompletionStage任务完成
thenAccept()相关方法用上一个任务的执行结果作为参数执行当前的action,这些方法接收的参数是一个函数式接口Consumer,表示一个待执行的任务。这些方法的返回值是CompletionStage,表示没有返回值。
注意:方法以Async结尾,表示使用单独的线程池来执行action,否则使用执行当前任务的线程来执行action。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that, when this stage completes normally,
//is executed with this stage's result as the argument to the supplied action.
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> thenAccept(Consumer<? super T> action);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using this stage's default asynchronous execution facility,
//with this stage's result as the argument to the supplied action.
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using the supplied Executor,
//with this stage's result as the argument to the supplied action.
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action, Executor executor);
...
}
public class CompletionStageExample {
//当cf实例的任务执行完成后,会回调传入thenAcceptAsync()方法中的回调函数
//其中回调函数的result表示cf异步任务的返回结果
public static void main(String[] args) throws IOException, ExecutionException, InterruptedException {
CompletableFuture<String> cf = CompletableFuture.supplyAsync(() -> "thenAccept message");
cf.thenAcceptAsync((result) -> {
System.out.println(Thread.currentThread().getName() + "第一个异步任务的返回值:" + result);
});
}
}
二.依赖两个CompletionStage任务都完成
thenAcceptBoth()相关方法提供了与thenAccept()相关方法类似的功能。不同点在于thenAcceptBoth()相关方法多了一个CompletionStage参数,表示当两个CompletionStage任务都完成后,才执行后面的action。而且这个action可以接收两个参数,这两个参数分别表示两个任务的返回值。thenAcceptBoth()相关方法相当于实现了两个异步任务的组合。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this and the other given stage both complete normally,
//is executed with the two results as arguments to the supplied action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param <U> the type of the other CompletionStage's result
//@return the new CompletionStage
public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//is executed using this stage's default asynchronous execution facility,
//with the two results as arguments to the supplied action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param <U> the type of the other CompletionStage's result
//@return the new CompletionStage
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//is executed using the supplied executor,
//with the two results as arguments to the supplied function.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the type of the other CompletionStage's result
//@return the new CompletionStage
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other, BiConsumer<? super T, ? super U> action, Executor executor);
...
}
public class ThenAcceptBothExample {
//task1和task2都执行完成后,会得到两个任务的返回值AcceptBoth和message,
//接着开始执行thenAcceptBoth()中的action,
//这个action会接收前面两个任务的执行结果r1和r2,并最终打印出:执行结果为"AcceptBoth+message"
public static void main(String[] args) {
CompletableFuture<String> task1 = CompletableFuture.supplyAsync(() -> "AcceptBoth");
CompletableFuture<String> task2 = CompletableFuture.supplyAsync(() -> "message");
task1.thenAcceptBoth(task2, (r1, r2) -> {
System.out.println("执行结果" + r1 + "+" + r2);
});
//或者采用Fluent风格来写
//CompletableFuture.supplyAsync(() -> "AcceptBoth").thenAcceptBoth(
// CompletableFuture.supplyAsync(() -> "message"), (r1, r2) -> {
// System.out.println("执行结果:" + r1 + ", " + r2);
// }
//);
}
}
三.依赖两个CompletionStage任务中的任何一个完成
acceptEither()相关方法和thenAcceptBoth()相关方法几乎一样。它同样接收两个CompletionStage任务,但是只需要保证其中一个任务完成,就会回调acceptEither()方法中传入的action任务。这两个CompletionStage任务谁先完成就会获得谁的返回值,作为参数传给后续的action任务。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed with the corresponding result as argument to the supplied action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other, Consumer<? super T> action);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed using this stage's default asynchronous execution facility,
//with the corresponding result as argument to the supplied action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed using the supplied executor,
//with the corresponding result as argument to the supplied function.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other, Consumer<? super T> action, Executor executor);
...
}
(4)有传参且有返回值的方法
有传参且有返回值的方法就是:用上一个异步任务的执行结果作为当前方法的参数进行下一步计算,并且当前方法会产生一个新的有返回值的CompletionStage对象。
一.依赖单个CompletionStage任务完成
thenApply()这一组方法的功能是等上一个CompletionStage任务执行完后,就会把执行结果传递给函数fn,将函数fn作为一个新的执行任务去执行,最后返回一个新的有返回值的CompletionStage对象。
其中以Async结尾的方法表示函数fn这个任务将采用单独的线程池来执行。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that, when this stage completes normally,
//is executed with this stage's result as the argument to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using this stage's default asynchronous execution facility,
//with this stage's result as the argument to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using the supplied Executor,
//with this stage's result as the argument to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor);
...
}
二.依赖两个CompletionStage任务都完成
thenCombine()这一组方法的功能类似于thenAcceptBoth()方法。它表示两个CompletionStage任务并行执行结束后,把这两个CompletionStage任务的执行结果传递给函数fn,函数fn执行后返回一个新的有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this and the other given stage both complete normally,
//is executed with the two results as arguments to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the type of the other CompletionStage's result
//@param <V> the function's return type
//@return the new CompletionStage
public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//is executed using this stage's default asynchronous execution facility,
//with the two results as arguments to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the type of the other CompletionStage's result
//@param <V> the function's return type
//@return the new CompletionStage
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//is executed using the supplied executor,
//with the two results as arguments to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the type of the other CompletionStage's result
//@param <V> the function's return type
//@return the new CompletionStage
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other, BiFunction<? super T,? super U,? extends V> fn, Executor executor);
...
}
public class ThenCombineExample {
public static void main(String[] args) {
CompletableFuture<String> task1 = CompletableFuture.supplyAsync(() -> "Combine");
CompletableFuture<String> task2 = CompletableFuture.supplyAsync(() -> "message");
CompletableFuture<String> cf = task1.thenCombineAsync(task2, (r1, r2) -> {
System.out.println("执行结果:" + r1 + ", " + r2);
return r1 + r2;
});
System.out.println(cf.get());
//或者采用Fluent风格来写
//CompletableFuture cf = CompletableFuture.supplyAsync(() -> "Combine").thenCombineAsync(
// CompletableFuture.supplyAsync(() -> "message"), (r1, r2) -> {
// System.out.println("执行结果:" + r1 + ", " + r2);
// return r1 + r2;
// }
//);
//System.out.println(cf.get());
}
}
三.依赖两个CompletionStage任务中的任何一个完成
applyToEither()方法表示两个CompletionStage任务中任意一个任务完成后,都执行传入applyToEither()方法中的函数fn,函数fn执行后返回一个新的有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed with the corresponding result as argument to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other, Function<? super T, U> fn);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed using this stage's default asynchronous execution facility,
//with the corresponding result as argument to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T, U> fn);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//is executed using the supplied executor,
//with the corresponding result as argument to the supplied function.
//@param other the other CompletionStage
//@param fn the function to use to compute the value of the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other, Function<? super T, U> fn, Executor executor);
...
}
(5)没传参也没返回值的方法
没传参也没返回值的方法就是:当前方法不依赖上一个异步任务的执行结果,只要上一个异步任务执行完成就执行当前方法,并且当前方法会产生一个新的没有返回值的CompletionStage对象,没传参也没返回值的方法都包含Run关键字。
一.依赖单个CompletionStage任务完成
thenRun()方法只要上一个阶段的任务执行完成后,便立即执行指定action。thenRunAsync()表示采用ForkjoinPool.commonPool()线程池来执行action,action执行完成后会返回一个新的没有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this stage completes normally, executes the given action.
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> thenRun(Runnable action);
//Returns a new CompletionStage that, when this stage completes normally,
//executes the given action using this stage's default asynchronous execution facility.
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> thenRunAsync(Runnable action);
//Returns a new CompletionStage that, when this stage completes normally,
//executes the given action using the supplied Executor.
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<Void> thenRunAsync(Runnable action, Executor executor);
...
}
二.依赖两个CompletionStage任务都完成
runAfterBoth()方法接收一个CompletionStage任务。该方法要保证两个CompletionStage任务都完成,再执行指定的action。action执行完成后会返回一个新的没有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this and the other given stage both complete normally, executes the given action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> runAfterBoth(CompletionStage<?> other, Runnable action);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//executes the given action using this stage's default asynchronous execution facility.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other, Runnable action);
//Returns a new CompletionStage that,
//when this and the other given stage complete normally,
//executes the given action using the supplied executor.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other, Runnable action, Executor executor);
...
}
三.依赖两个CompletionStage任务中的任何一个完成
runAfterEither()方法接收一个CompletionStage任务。它只需要保证两个任务中任意一个任务执行完成,即可执行指定的action,action执行完成后会返回一个新的没有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally, executes the given action.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> runAfterEither(CompletionStage<?> other, Runnable action);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//executes the given action using this stage's default asynchronous execution facility.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@return the new CompletionStage
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other, Runnable action);
//Returns a new CompletionStage that,
//when either this or the other given stage complete normally,
//executes the given action using the supplied executor.
//@param other the other CompletionStage
//@param action the action to perform before completing the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other, Runnable action, Executor executor);
...
}
(6)组合起来串行执行的方法
thenCompose()是多任务组合方法,它的作用是把两个CompletionStage任务进行组合达到串行执行的目的,也就是把第一个任务的执行结果作为参数传递给第二个任务执行。
thenCompose()方法有点类似于thenCombine()方法,但thenCompose()方法中的两个任务存在先后关系,而thenCombine()方法中的两个任务是并行执行的。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that, when this stage completes normally,
//is executed with this stage as the argument to the supplied function.
//@param fn the function returning a new CompletionStage
//@param <U> the type of the returned CompletionStage's result
//@return the CompletionStage
public <U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using this stage's default asynchronous execution facility,
//with this stage as the argument to the supplied function.
//@param fn the function returning a new CompletionStage
//@param <U> the type of the returned CompletionStage's result
//@return the CompletionStage
public <U> CompletionStage<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn);
//Returns a new CompletionStage that, when this stage completes normally,
//is executed using the supplied Executor,
//with this stage's result as the argument to the supplied function.
//@param fn the function returning a new CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the type of the returned CompletionStage's result
//@return the CompletionStage
public <U> CompletionStage<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn, Executor executor);
...
}
public class ThenComposeExample {
//下面使用supplyAsync()方法构建了一个异步带返回值的任务,返回值为"Compose Message";
//接着使用thenCompose()方法组合另外一个任务,并把前面任务的返回值r作为参数传递给第二个任务
//在第二个任务中同样使用supplyAsync()方法构建了一个新的任务将参数r转为大写
//最后thenCompose()方法返回一个新的没有返回值的CompletionStage对象
public static void main(String[] args) {
CompletableFuture<String> task1 = CompletableFuture.supplyAsync(() -> "Compose Message");
CompletableFuture<String> cf = task1.thenCompose(r -> CompletableFuture.supplyAsync(() -> r.toUpperCase()));
System.out.println(cf.get());
//或者采用Fluent风格来写
//CompletableFuture cf = CompletableFuture.supplyAsync(() -> "Compose Message")
// .thenCompose(r -> CompletableFuture.supplyAsync(() -> r.toUpperCase())
//);
//System.out.println(cf.get());
}
}
(7)异常处理方法
上述介绍的方法都是CompletionStage任务正常执行时的处理方法。如果依赖的前一个任务出现异常,那么会导致后续的任务无法正常执行。比如下述代码,如果前置任务cf出现异常,那么会影响后置任务的执行。
public class RunAfterBothExample {
public static void main(String[] args) {
CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
throw new RuntimeException("Exception");
}).runAfterBoth(CompletableFuture.supplyAsync(() -> "Message"), () -> {
System.out.println("Done");
});
System.out.println(cf.get());
}
}
CompletionStage提供了3类异常处理的方法。
一.whenComplete()方法
whenComplete()这一组方法表示的是:不论前置的CompletionStage任务是正常执行结束还是出现异常,都能触发执行指定action,最后返回一个没返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage with the same result or exception as this stage,
//that executes the given action when this stage completes.
//@param action the action to perform
//@return the new CompletionStage
public CompletionStage<T> whenComplete(BiConsumer<? super T, ? super Throwable> action);
//Returns a new CompletionStage with the same result or exception as this stage,
//that executes the given action using this stage's default asynchronous execution facility when this stage completes.
//@param action the action to perform
//@return the new CompletionStage
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action);
//Returns a new CompletionStage with the same result or exception as this stage,
//that executes the given action using the supplied Executor when this stage completes.
//@param action the action to perform
//@param executor the executor to use for asynchronous execution
//@return the new CompletionStage
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action, Executor executor);
...
}
二.handle()方法
handle()这一组方法表示的是:不论前置的CompletionStage任务是正常执行结束还是出现异常,都会执行其中的函数fn,最后返回一个有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this stage completes either normally or exceptionally,
//is executed with this stage's result and exception as arguments to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);
//Returns a new CompletionStage that,
//when this stage completes either normally or exceptionally,
//is executed using this stage's default asynchronous execution facility,
//with this stage's result and exception as arguments to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);
//Returns a new CompletionStage that,
//when this stage completes either normally or exceptionally,
//is executed using the supplied executor,
//with this stage's result and exception as arguments to the supplied function.
//@param fn the function to use to compute the value of the returned CompletionStage
//@param executor the executor to use for asynchronous execution
//@param <U> the function's return type
//@return the new CompletionStage
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn, Executor executor);
...
}
public class HandleExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
throw new RuntimeException("Exception");
}).handleAsync((r, th) -> {
return th != null ? "出现异常" : "正常执行";
});
System.out.println(cf.get());
}
}
三.exceptionally()方法
exceptionally()方法接收一个函数fn,当上一个CompletionStage任务出现异常时,会把该异常作为参数传递给fn,最后返回一个有返回值的CompletionStage对象。
public interface CompletionStage<T> {
...
//Returns a new CompletionStage that,
//when this stage completes exceptionally,
//is executed with this stage's exception as the argument to the supplied function.
//Otherwise, if this stage completes normally,
//then the returned stage also completes normally with the same value.
//@param fn the function to use to compute the value of the returned CompletionStage if this CompletionStage completed exceptionally
//@return the new CompletionStage
public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);
...
}
public class ExceptionallyExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CompletableFuture cf = CompletableFuture.supplyAsync(() -> {
throw new RuntimeException("Exception");
}).exceptionally(e -> {
log.error(e);
return "ExceptionallyExample";
});
System.out.println(cf.get());
}
}
6.CompletableFuture的实现原理分析
(1)CompletableFuture实现回调的例子
(2)CompletableFuture如何存储任务
(3)Completion的几个实现类
(4)Completion的栈结构存储回调任务
(5)Completion中的回调任务的执行和总结
(1)CompletableFuture实现回调的例子
CompletableFuture实现了Future接口和CompletionStage接口,CompletionStage接口为CompletableFuture提供了丰富的异步回调接口,CompletableFuture可以使用这些接口来实现复杂的异步计算工作。
下面是一个使用CompletableFuture回调的例子。其中构建了两个CompletionStage任务,第一个任务是返回"thenAccept message"字符串,第二个任务是打印第一个任务的返回值。注意:Accept关键字有传参没有返回值,Run关键字没传参没返回值。
这两个任务建立了串行执行的关系,第二个任务相当于第一个任务执行结束后的异步回调,并且多个CompletionStage任务可以使用链式风格串联。
public class CompletionStageExample {
public static void main(String[] args) throws InterruptedException, ExecutionException {
CompletableFuture<Void> cf = CompletableFuture.supplyAsync(() -> "thenAccept message")
.thenAcceptAsync((result) -> {
System.out.println("第一个异步任务的返回值:" + result);
});
cf.get();
}
}
(2)CompletableFuture如何存储任务
一.CompletableFuture的成员变量
CompletableFuture的成员变量只有两个:result和stack。
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
...
//表示CompletionStage任务的返回结果或者一个异常的封装对象AltResult
volatile Object result;//Either the result or boxed AltResult
//表示依赖操作栈的栈顶,链式调用中传递的任务都会被压入这个stack中
volatile Completion stack;//Top of Treiber stack of dependent actions
...
}
二.表示具体执行任务的Completion
成员变量stack是一个存储Completion对象的Treiber Stack结构,Treiber Stack是一种基于CAS机制实现的无锁并发栈。
Completion表示一个具体的执行任务。每个回调任务都会封装成Completion对象,然后放入Treiber Stack中。Completion中的成员变量next保存了栈中的下一个回调任务。
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
...
abstract static class Completion extends ForkJoinTask<Void> implements Runnable, AsynchronousCompletionTask {
volatile Completion next;//Treiber stack link
//Performs completion action if triggered, returning a dependent that may need propagation, if one exists.
//@param mode SYNC, ASYNC, or NESTED
abstract CompletableFuture<?> tryFire(int mode);
//Returns true if possibly still triggerable. Used by cleanStack.
abstract boolean isLive();
public final void run() {
tryFire(ASYNC);
}
public final boolean exec() {
tryFire(ASYNC);
return true;
}
public final Void getRawResult() {
return null;
}
public final void setRawResult(Void v) {
}
}
...
}
(3)Completion的几个实现类
一.UniCompletion
当使用如thenRun()、thenApply()等方法处理单个任务的,那么这些任务就会封装成UniCompletion对象。
二.CoCompletion
当使用如thenCombine()、applyToEither()等方法处理两个任务的,那么这些任务会封装成CoCompletion对象。
三.Signaller
当使用如get()、join()等方法处理任务时,那么调用方也会作为任务被封装成Signaller对象。
(4)Completion的栈结构存储回调任务
以如下创建一个CompletableFuture任务为例,说明在CompletableFuture中是如何存储这些回调任务的。注意:该例子在Debug中没有发现baseFuture的成员变量stack的变化。
public class CompletionStackExample {
public static void main(String[] args) throws InterruptedException, ExecutionException {
//创建一个CompletableFuture任务对象
CompletableFuture<String> baseFuture = CompletableFuture.supplyAsync(() -> {
try {
System.out.println("开始执行入栈baseFuture的第一个异步任务");
Thread.sleep(5000);
System.out.println("第一个异步任务执行完毕");
} catch (Exception e) {
}
return "BaseFuture";
});
System.out.println("主线程第一次打印");
baseFuture.thenApply(r -> {
System.out.println("开始执行入栈baseFuture的第二个异步任务");
try {
Thread.sleep(5000);
System.out.println("第二个异步任务执行完毕");
} catch (Exception e) {
}
return "Then Apply";
});//输出结果中没有"Then Apply",因为没有任务使用"Then Apply"这个返回值
System.out.println("主线程第二次打印");
baseFuture.thenAccept(r -> {
System.out.println("开始执行入栈baseFuture的第三个异步任务");
try {
Thread.sleep(5000);
System.out.println("第三个异步任务执行完毕: " + r);
} catch (Exception e) {
}
}).thenAccept(Void -> {
System.out.println("baseFuture的第三个异步任务返回的新CompletableFuture,入栈第一个异步任务");
try {
Thread.sleep(5000);
System.out.println("第三个异步任务的子任务执行完毕");
} catch (Exception e) {
}
});
System.out.println("主线程第三次打印");
baseFuture.thenApply(r -> {
System.out.println("开始执行入栈baseFuture的第四个异步任务");
try {
Thread.sleep(5000);
System.out.println("第四个异步任务执行完毕");
} catch (Exception e) {
}
return "Apply Message";
}).thenAccept(r -> {
System.out.println("baseFuture的第四个异步任务返回的新CompletableFuture,入栈第一个异步任务");
try {
Thread.sleep(5000);
System.out.println("第四个异步任务的子任务执行完毕: " + r);
} catch (Exception e) {
}
});
System.out.println("主线程第四次打印");
System.out.println("finish: " + baseFuture.get());
}
//输出的结果如下:
//主线程第一次打印
//开始执行入栈baseFuture的第一个异步任务
//主线程第二次打印
//主线程第三次打印
//主线程第四次打印
//第一个异步任务执行完毕
//开始执行入栈baseFuture的第四个异步任务
//开始执行入栈baseFuture的第三个异步任务
//第四个异步任务执行完毕
//第三个异步任务执行完毕: BaseFuture
//baseFuture的第三个异步任务返回的新CompletableFuture,入栈第一个异步任务
//baseFuture的第四个异步任务返回的新CompletableFuture,入栈第一个异步任务
//第三个异步任务的子任务执行完毕
//第四个异步任务的子任务执行完毕: Apply Message
//开始执行入栈baseFuture的第二个异步任务
//第二个异步任务执行完毕
//finish: BaseFuture
}
一.第一阶段的Completion Stack结构
主线程第一次打印和第二次打印执行完成后,会创建如下图所示的结构。此时Completion类型是UniCompletion,因为thenApply()方法只接收一个任务。
二.第二阶段的Completion Stack结构
主线程第三次打印执行完成后,就会创建如下图所示的结构。
首先使用baseFuture.thenAccept()方法在baseFuture上增加一个回调,此时会把这个回调对应的Completion压入baseFuture的stack的栈顶。
然后会产生一个新的CompletableFuture对象实例继续执行thenAccept(),由于这个新的CompletableFuture对象实例是在栈顶的Completion中产生的,因此在栈顶的Completion中会有一个dep属性指向这个新的对象实例。
在新的CompletableFuture对象中又调用thenAccept()来构建一个回调任务,所以又会有一个新的Completion Stack结构。
三.第三阶段的Completion Stack结构
主线程第四次打印执行完成后,就会创建如下图所示的结构。
首先是在baseFuture上使用thenApply()方法创建一个带有返回值的回调,这个回调对应的Completion同样会压入baseFuture的stack的栈顶。然后同样会创建一个新的CompletableFuture对象实例。接着在这个新的对象实例中继续使用thenAccept()方法添加另外一个回调,这个回调对应的Completion会压入新的CompletableFuture的stack的栈顶。
(5)Completion中的回调任务的执行和总结
从Completion Stack的栈顶中逐个出栈来执行。
如果当前出栈的Completion存在一个子Completion Stack,那么就优先执行这一条链路的Completion任务。
CompletableFuture中的回调任务,是基于Completion来实现的。针对CompletionStage中不同类型的方法,Completion有不同的子类处理。
Completion表示一个具体的回调任务,这些Completion采用了一种Treiber Stack结构来存储。由于每个Completion都可能会产生新的CompletableFuture,所以整个结构看起来像一棵很深的树。
7.CompletableFuture的核心源码分析
(1)CompletableFuture的核心源码
(2)CompletableFuture对象的创建
(3)Completion Stack的构建
(4)Completion任务的执行流程
(5)Completion任务的执行结果获取
(6)总结
(1)CompletableFuture的核心源码
CompletableFuture的源码主要分四部分:
一.CompletableFuture对象的创建
二.Completion Stack的构建
三.get()方法获取任务处理结果时阻塞和唤醒线程
四.当前置任务执行完成后,Completion Stack的执行流程
(2)CompletableFuture对象的创建
假设使用supplyAsync()方法来创建一个CompletableFuture对象。那么在执行supplyAsync()方法时触发调用的asyncSupplyStage()方法中,便会使用线程池来执行一个由AsyncSupply()构造方法构建的任务,这个线程池默认情况下是由ForkJoinPool的commonPool()方法返回的。
当线程池执行由AsyncSupply()构造方法构建的任务时,会调用AsyncSupply的run()方法来执行具体的任务。
在AsyncSupply的run()方法中:首先会使用f.get()来获得Supplier这个函数式接口的执行结果,然后通过执行CompletableFuture的completeValue()方法,把执行结果通过CAS设置到CompletableFuture的成员变量result中。最后调用CompletableFuture的postComplete()方法表示执行完成,该postComplete()方法会执行Completion Stack中的所有回调任务。
//Represents a supplier of results.
//There is no requirement that a new or distinct result be returned each time the supplier is invoked.
//This is a functional interface whose functional method is get().
//@param <T> the type of results supplied by this supplier
@FunctionalInterface
public interface Supplier<T> {
//Gets a result.
//@return a result
T get();
}
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
volatile Object result; // Either the result or boxed AltResult
volatile Completion stack; // Top of Treiber stack of dependent actions
//Returns a new CompletableFuture that is asynchronously completed by a task
//running in the ForkJoinPool#commonPool() with the value obtained by calling the given Supplier.
//@param supplier a function returning the value to be used to complete the returned CompletableFuture
//@param <U> the function's return type
//@return the new CompletableFuture
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
return asyncSupplyStage(asyncPool, supplier);
}
static <U> CompletableFuture<U> asyncSupplyStage(Executor e, Supplier<U> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<U> d = new CompletableFuture<U>();
//使用线程池来执行一个由AsyncSupply()方法构建的任务
e.execute(new AsyncSupply<U>(d, f));
//返回一个新的CompletableFuture对象
return d;
}
static final class AsyncSupply<T> extends ForkJoinTask<Void> implements Runnable, AsynchronousCompletionTask {
CompletableFuture<T> dep;
Supplier<T> fn;
AsyncSupply(CompletableFuture<T> dep, Supplier<T> fn) {
this.dep = dep;
this.fn = fn;
}
public final Void getRawResult() {
return null;
}
public final void setRawResult(Void v) {
}
public final boolean exec() {
run();
return true;
}
public void run() {
CompletableFuture<T> d;
Supplier<T> f;
if ((d = dep) != null && (f = fn) != null) {
dep = null; fn = null;
if (d.result == null) {
try {
//首先使用f.get()来获得Supplier这个函数式接口中的执行结果
//然后通过执行CompletableFuture的completeValue()方法,
//把执行结果设置到CompletableFuture的成员变量result中;
d.completeValue(f.get());
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
//最后调用CompletableFuture的postComplete()方法执行Completion Stack中的所有回调任务
d.postComplete();
}
}
}
//Completes with a non-exceptional result, unless already completed.
final boolean completeValue(T t) {
return UNSAFE.compareAndSwapObject(this, RESULT, null, (t == null) ? NIL : t);
}
//Pops and tries to trigger all reachable dependents. Call only when known to be done.
final void postComplete() {
//On each step, variable f holds current dependents to pop and run.
//It is extended along only one path at a time, pushing others to avoid unbounded recursion.
CompletableFuture<?> f = this;
Completion h;
while ((h = f.stack) != null || (f != this && (h = (f = this).stack) != null)) {
CompletableFuture<?> d;
Completion t;
if (f.casStack(h, t = h.next)) {
if (t != null) {
if (f != this) {
pushStack(h);
continue;
}
h.next = null; // detach
}
f = (d = h.tryFire(NESTED)) == null ? this : d;
}
}
}
private static final sun.misc.Unsafe UNSAFE;
private static final long RESULT;
private static final long STACK;
private static final long NEXT;
static {
try {
final sun.misc.Unsafe u;
UNSAFE = u = sun.misc.Unsafe.getUnsafe();
Class<?> k = CompletableFuture.class;
RESULT = u.objectFieldOffset(k.getDeclaredField("result"));
STACK = u.objectFieldOffset(k.getDeclaredField("stack"));
NEXT = u.objectFieldOffset(Completion.class.getDeclaredField("next"));
} catch (Exception x) {
throw new Error(x);
}
}
...
}
(3)Completion Stack的构建
假设已经使用了CompletableFuture的supplyAsync()方法创建了源任务,接着需要使用CompletionStage的thenApply()等方法来构建回调任务。
源任务 -> Supplier接口的实现类对象(get()方法),回调任务 -> Function接口的实现类对象(apply()方法)。
CompletableFuture的thenApply()方法会触发执行uniApplyStage()方法。在uniApplyStage()方法中,首先会创建一个新的CompletableFuture对象,然后根据CompletableFuture的uniApply()方法判断源任务是否已经完成。如果源任务已经完成,则不需要入栈,直接执行回调任务的apply()方法。如果源任务还没执行完成,才将回调任务封装为UniApply对象并入栈。
源任务还没执行完成的处理过程具体如下:首先把回调任务封装成一个UniApply对象,然后调用CompletableFuture的push()方法,把UniApply对象压入源任务所在CompletableFuture对象中的stack的栈顶,最后调用UniApply的tryFire()方法来尝试执行该回调任务。
注意:UniApply对象其实是一个Completion对象,因为UniApply类继承自UniCompletion类,而UniCompletion类又继承自Completion类。
//Represents a function that accepts one argument and produces a result.
//This is a functional interface whose functional method is apply(Object).
//@param <T> the type of the input to the function
//@param <R> the type of the result of the function
@FunctionalInterface
public interface Function<T, R> {
//Applies this function to the given argument.
//@param t the function argument
//@return the function result
R apply(T t);
...
}
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
volatile Object result; // Either the result or boxed AltResult
volatile Completion stack; // Top of Treiber stack of dependent actions
public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn) {
return uniApplyStage(null, fn);
}
private <V> CompletableFuture<V> uniApplyStage(Executor e, Function<? super T,? extends V> f) {
if (f == null) throw new NullPointerException();
//创建一个新的CompletableFuture对象
CompletableFuture<V> d = new CompletableFuture<V>();
//根据CompletableFuture的uniApply()方法判断源任务是否已经完成
//如果源任务已经完成,则不需要入栈
if (e != null || !d.uniApply(this, f, null)) {
//首先把回调任务f封装成一个UniApply对象
UniApply<T,V> c = new UniApply<T,V>(e, d, this, f);
//然后调用CompletableFuture的push()方法
//把UniApply对象压入源任务所在的CompletableFuture对象中的stack的栈顶
push(c);
//最后调用UniApply的tryFire()方法来尝试执行该回调任务
c.tryFire(SYNC);
}
return d;
}
final <S> boolean uniApply(CompletableFuture<S> a, Function<? super S,? extends T> f, UniApply<S,T> c) {
Object r;
Throwable x;
//如果任务还没完成(result == null),直接返回false
if (a == null || (r = a.result) == null || f == null) {
return false;
}
tryComplete: if (result == null) {
//判断result是否为异常类型
if (r instanceof AltResult) {
if ((x = ((AltResult)r).ex) != null) {
//如果result是异常类型,则使用completeThrowable()方法处理,并返回true
completeThrowable(x, r);
break tryComplete;
}
r = null;
}
//如果result不为空,任务已经执行完成,并且没有出现异常
try {
if (c != null && !c.claim()) {
return false;
}
//把源任务的执行结果s作为参数传给回调任务f
//直接执行回调任务的apply()方法,并将结果设置到CompletableFuture对象的成员变量result中
@SuppressWarnings("unchecked") S s = (S) r;
completeValue(f.apply(s));
} catch (Throwable ex) {
completeThrowable(ex);
}
}
return true;
}
//Pushes the given completion (if it exists) unless done.
final void push(UniCompletion<?,?> c) {
if (c != null) {
while (result == null && !tryPushStack(c)) {
lazySetNext(c, null); // clear on failure
}
}
}
final boolean tryPushStack(Completion c) {
Completion h = stack;
lazySetNext(c, h);
return UNSAFE.compareAndSwapObject(this, STACK, h, c);
}
static void lazySetNext(Completion c, Completion next) {
UNSAFE.putOrderedObject(c, NEXT, next);
}
...
static final class UniApply<T,V> extends UniCompletion<T,V> {
Function<? super T,? extends V> fn;
UniApply(Executor executor, CompletableFuture<V> dep, CompletableFuture<T> src, Function<? super T,? extends V> fn) {
super(executor, dep, src);
this.fn = fn;
}
//尝试执行当前CompletableFuture中的Completion
final CompletableFuture<V> tryFire(int mode) {
CompletableFuture<V> d;
CompletableFuture<T> a;
//执行CompletableFuture的uniApply()方法尝试执行回调任务
if ((d = dep) == null || !d.uniApply(a = src, fn, mode > 0 ? null : this)) {
return null;
}
dep = null;
src = null;
fn = null;
//执行CompletableFuture的postFire()方法
return d.postFire(a, mode);
}
}
final CompletableFuture<T> postFire(CompletableFuture<?> a, int mode) {
if (a != null && a.stack != null) {
if (mode < 0 || a.result == null) {
a.cleanStack();
} else {
a.postComplete();
}
}
if (result != null && stack != null) {
if (mode < 0) {
return this;
} else {
postComplete();
}
}
return null;
}
abstract static class UniCompletion<T,V> extends Completion {
Executor executor;//执行当前任务的线程池
CompletableFuture<V> dep;//构建当前任务的CompletableFuture对象
CompletableFuture<T> src;//指向源任务
UniCompletion(Executor executor, CompletableFuture<V> dep, CompletableFuture<T> src) {
this.executor = executor;
this.dep = dep;
this.src = src;
}
//判断是否使用单独的线程池来执行任务
final boolean claim() {
Executor e = executor;
if (compareAndSetForkJoinTaskTag((short)0, (short)1)) {
if (e == null) {
return true;
}
executor = null; // disable
e.execute(this);
}
return false;
}
//判断任务是否存活
final boolean isLive() {
return dep != null;
}
}
}
(4)Completion任务的执行流程
一.CompletableFuture的postComplete()方法
CompletableFuture中的任务完成后即源任务完成后,会通过CompletableFuture.postComplete()方法来完成后置逻辑,也就是把当前CompletableFuture.stack中存储的Completion逐项出栈执行。
postComplete()方法会触发stack中所有可执行的回调任务Completion,该方法会遍历整个stack,并通过Completion任务的tryFire()方法来尝试执行。
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
volatile Object result;
volatile Completion stack;
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
return asyncSupplyStage(asyncPool, supplier);
}
static <U> CompletableFuture<U> asyncSupplyStage(Executor e, Supplier<U> f) {
if (f == null) throw new NullPointerException();
CompletableFuture<U> d = new CompletableFuture<U>();
//使用线程池来执行一个由AsyncSupply()方法构建的任务
e.execute(new AsyncSupply<U>(d, f));
//返回一个新的CompletableFuture对象
return d;
}
static final class AsyncSupply<T> extends ForkJoinTask<Void> implements Runnable, AsynchronousCompletionTask {
CompletableFuture<T> dep;
Supplier<T> fn;
AsyncSupply(CompletableFuture<T> dep, Supplier<T> fn) {
this.dep = dep;
this.fn = fn;
}
...
public void run() {
CompletableFuture<T> d;
Supplier<T> f;
if ((d = dep) != null && (f = fn) != null) {
dep = null; fn = null;
if (d.result == null) {
try {
//首先使用f.get()来获得Supplier这个函数式接口中的执行结果
//然后通过执行CompletableFuture的completeValue()方法,
//把执行结果设置到CompletableFuture的成员变量result中;
d.completeValue(f.get());
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
//最后调用CompletableFuture的postComplete()方法执行Completion Stack中的所有回调任务
d.postComplete();
}
}
}
final boolean completeValue(T t) {
return UNSAFE.compareAndSwapObject(this, RESULT, null, (t == null) ? NIL : t);
}
final void postComplete() {
CompletableFuture<?> f = this;
Completion h;
//如果stack不为空,则不断循环从stack中出栈Completion任务
while ((h = f.stack) != null || (f != this && (h = (f = this).stack) != null)) {
CompletableFuture<?> d;
Completion t;
//通过CAS逐个取出stack中的Completion任务并重置stack
if (f.casStack(h, t = h.next)) {
if (t != null) {
//表示h.tryFire()返回了另外一个CompleableFuture对象
if (f != this) {
pushStack(h);
continue;
}
h.next = null; // detach
}
//执行指定Completion的tryFire()方法,比如UniApply.tryFire()方法
f = (d = h.tryFire(NESTED)) == null ? this : d;
}
}
}
...
}
二.Completion任务的执行流程图
(5)Completion任务的执行结果获取
可以通过get()或join()方法获取CompletableFuture的执行结果。当任务还没执行结束时(r == null),则调用waitingGet()方法进行阻塞等待。主要会先自旋256次判断执行是否结束,如果不是才挂起线程进行阻塞,从而避免直接挂起线程带来的性能开销。
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
...
//Waits if necessary for this future to complete, and then returns its result.
public T get() throws InterruptedException, ExecutionException {
Object r;
return reportGet((r = result) == null ? waitingGet(true) : r);
}
//Returns raw result after waiting, or null if interruptible and interrupted.
private Object waitingGet(boolean interruptible) {
Signaller q = null;
boolean queued = false;
int spins = -1;
Object r;
while ((r = result) == null) {
if (spins < 0) {
spins = (Runtime.getRuntime().availableProcessors() > 1) ? 1 << 8 : 0;
} else if (spins > 0) {
if (ThreadLocalRandom.nextSecondarySeed() >= 0) {
--spins;
}
} else if (q == null) {
q = new Signaller(interruptible, 0L, 0L);
} else if (!queued) {
queued = tryPushStack(q);
} else if (interruptible && q.interruptControl < 0) {
q.thread = null;
cleanStack();
return null;
} else if (q.thread != null && result == null) {
try {
ForkJoinPool.managedBlock(q);
} catch (InterruptedException ie) {
q.interruptControl = -1;
}
}
}
if (q != null) {
q.thread = null;
if (q.interruptControl < 0) {
if (interruptible) {
r = null; // report interruption
} else {
Thread.currentThread().interrupt();
}
}
}
postComplete();
return r;
}
...
}
(6)总结
CompletableFuture的核心在于CompletionStage,CompletionStage提供了最基础的异步回调机制。也就是主线程不需要通过阻塞方式来等待异步任务的执行结果,而是当异步任务执行完成后主动通知来触发执行下一个任务。此外,CompletionStage全部采用了函数式接口的方式来实现,可以通过链式的方式来对多个CompletionStage进行组合。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix