POJ 2976 Dropping tests(01分数规划)

Dropping tests

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15067   Accepted: 5263

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

 

题意

给出n个二元组$(a_1,b_1)(a_2,b_2)...(a_n,b_n)$,从中选出$(n-k+1)$个二元组,使得选出的这k个二元组$c=\frac{a_1+a_2+...+a_k}{b_1+b_2+...+b_k}$最大。

分析

01分数规划。

对于原问题,并不好分析,将问题转化一下,转化成判定性问题。

原题中使得c最大,假设c就是答案,那么有:

$a_1+a_2+...+a_k=c*(b_1+b_2+...+b_k)$
$a_1+a_2+...+a_k=c*b_1+c*b_2+...+c*b_k$
$(a_1-c*b_1)+(a_2-c*b_2)...+(a_k-c*b_k)=0$

所以我们可以二分一个c,判断是否可行。

设新数组$d[i]=a[i]-c*b[i]$,从d数组中挑出$(n-k+1)$最大的数,如果大于等于0,那么c满足,否则不满足。

复杂度$O(nlogn)$

code

 1 #include<cstdio>
 2 #include<algorithm>
 3 
 4 using namespace std;
 5 
 6 const double eps = 1e-8;
 7 double a[1010],b[1010],c[1010];
 8 int n,k;
 9 
10 bool check(double x) {
11     for (int i=1; i<=n; ++i) 
12         c[i] = a[i] - x * b[i];
13     sort(c+1,c+n+1);
14     double ans = 0.0;
15     for (int i=k+1; i<=n; ++i) ans += c[i];
16     return ans >= 0.0;
17 }
18 int main() {
19     while (~scanf("%d%d",&n,&k)) {
20         if (n==0 && k==0) break;
21         for (int i=1; i<=n; ++i) scanf("%lf",&a[i]);
22         for (int i=1; i<=n; ++i) scanf("%lf",&b[i]);
23         double L = 0.0,R = 1.0,mid;
24         while (R-L>eps) {
25             mid = (L + R) / 2.0;
26             if (check(mid)) L = mid;
27             else R = mid;
28         }
29         printf("%.0lf\n",L*100);
30     }
31     return 0;
32 }

 

posted @ 2018-03-03 21:00  MJT12044  阅读(222)  评论(0编辑  收藏  举报