HDU 2665 Kth number

Kth number

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13726    Accepted Submission(s): 4160


Problem Description

Give you a sequence and ask you the kth big number of a inteval.
 

 

Input

The first line is the number of the test cases. 
For each test case, the first line contain two integer n and m (n, m <= 100000), indicates the number of integers in the sequence and the number of the quaere. 
The second line contains n integers, describe the sequence. 
Each of following m lines contains three integers s, t, k. 
[s, t] indicates the interval and k indicates the kth big number in interval [s, t]
 

 

Output

For each test case, output m lines. Each line contains the kth big number.
 

 

Sample Input

1 10 1 1 4 2 3 5 6 7 8 9 0 1 3 2
 

 

Sample Output

2
 

分析

求一段区间内的第k大值。

主席树~

code

 

 1 #include<cstdio>
 2 #include<algorithm>
 3 
 4 using namespace std;
 5 
 6 const int N = 100010;
 7 int sum[N*20],ls[N*20],rs[N*20];
 8 int num[N],t[N],Root[N],tot;
 9 
10 void build(int l,int r,int &rt) {
11     rt = ++tot;
12     sum[rt] = 0;
13     if (l==r) return ;
14     int m = (l + r) / 2;
15     build(l,m,ls[rt]);
16     build(m+1,r,rs[rt]);
17 }
18 void update(int l,int r,int &rt,int last,int p) {
19     rt = ++tot;
20     ls[rt] = ls[last];rs[rt] = rs[last];
21     sum[rt] = sum[last] + 1;
22     if (l==r) return ;
23     int m = (l + r) / 2;
24     if (p<=m) update(l,m,ls[rt],ls[last],p);
25     else update(m+1,r,rs[rt],rs[last],p);
26 }
27 int query(int l,int r,int L,int R,int k) {
28     if (l==r) return l;
29     int m = (l + r) / 2;
30     int cnt = sum[ls[R]] - sum[ls[L]];
31     if (k <= cnt) return query(l,m,ls[L],ls[R],k);
32     else return query(m+1,r,rs[L],rs[R],k-cnt);
33 }
34 
35 int main () {
36     int T,n,m;
37     scanf("%d",&T);
38     while (T--) {
39         tot = 0;
40         scanf("%d%d",&n,&m);
41         for (int i=1; i<=n; ++i) 
42             scanf("%d",&num[i]),t[i] = num[i];
43         sort(t+1,t+n+1);
44         int c = unique(t+1,t+n+1)-(t+1);
45         build(1,c,Root[0]);
46         for (int i=1; i<=n; ++i) {
47             int x = lower_bound(t+1,t+c+1,num[i])-t;
48             update(1,c,Root[i],Root[i-1],x);
49         }
50         while (m--) {
51             int l,r,k;
52             scanf("%d%d%d",&l,&r,&k);
53             printf("%d\n",t[query(1,c,Root[l-1],Root[r],k)]);
54         }
55     }
56     return 0;
57 }
View Code

 

posted @ 2018-02-11 16:30  MJT12044  阅读(163)  评论(0编辑  收藏  举报