P3381 【模板】最小费用最大流

P3381 【模板】最小费用最大流

题目描述

如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

输入输出格式

输入格式:

 

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。

 

输出格式:

 

一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

 

输入输出样例

输入样例#1:
4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5
输出样例#1:
50 280

说明

时空限制:1000ms,128M

(BYX:最后两个点改成了1200ms)

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=5000,M<=50000

样例说明:

如图,最优方案如下:

第一条流为4-->3,流量为20,费用为3*20=60。

第二条流为4-->2-->3,流量为20,费用为(2+1)*20=60。

第三条流为4-->2-->1-->3,流量为10,费用为(2+9+5)*10=160。

故最大流量为50,在此状况下最小费用为60+60+160=280。

故输出50 280。

code

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 
 5 using namespace std;
 6 
 7 const int N = 10010;
 8 const int M = 100100;
 9 const int INF = 1e9;
10 
11 struct Edge{
12     int from,to,nxt,cap,cost;
13 }e[M];
14 int head[N],dis[N],pre[N],q[200100];
15 bool vis[N];
16 int tot = 1,n,m,S,T,L,R,Maxflow,Mincost;
17 
18 inline char nc() {
19     static char buf[100000],*p1 = buf,*p2 = buf;
20     return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2) ? EOF :*p1++;
21 }
22 inline int read() {
23     int x = 0,f = 1;char ch=nc();
24     for (; ch<'0'||ch>'9'; ch = nc()) if (ch == '-') f = -1;
25     for (; ch>='0'&&ch<='9'; ch = nc()) x = x*10+ch-'0';
26     return x * f;
27 }
28 inline void add_edge(int u,int v,int cap,int cost) { 
29     e[++tot].from = u,e[tot].to = v,e[tot].cap = cap,e[tot].cost = cost,e[tot].nxt = head[u],head[u] = tot;
30 }
31 bool spfa() {
32     for (int i=1; i<=n; ++i) 
33         dis[i] = INF,vis[i] = false;
34     dis[S] = 0;vis[S] = true;pre[S] = 0;
35     L = 1;R = 0;q[++R] = S;
36     while (L <= R) {
37         int u = q[L++];
38         for (int i=head[u]; i; i=e[i].nxt) {
39             int v = e[i].to;
40             if (e[i].cap>0 && dis[v] > dis[u]+e[i].cost) {
41                 dis[v] = dis[u] + e[i].cost;
42                 pre[v] = i;
43                 if (!vis[v]) {
44                     vis[v] = true;q[++R] = v;
45                 }
46             }
47         }
48         vis[u] = false;
49     }
50     if (dis[T] == INF) return false;
51     return true;
52 }
53 void MincostMaxflow() {
54     while (spfa()) {
55         int mnflow = INF;
56         for (int i=T; i!=S; i=e[pre[i]].from) 
57             mnflow = min(mnflow,e[pre[i]].cap);
58         for (int i=T; i!=S; i=e[pre[i]].from) {
59             e[pre[i]].cap -= mnflow;
60             e[pre[i]^1].cap += mnflow;
61         }
62         Maxflow += mnflow;
63         Mincost += mnflow * dis[T];    
64     }
65 }
66 int main () {
67     n = read(),m = read(),S = read(),T = read();
68     for (int a,b,c,d,i=1; i<=m; ++i) {
69         a = read(),b = read(),c = read(),d = read();
70         add_edge(a,b,c,d);add_edge(b,a,0,-d);
71     }
72     MincostMaxflow();
73     printf("%d %d\n",Maxflow,Mincost);
74     return 0;
75 }

 

 

以前的代码

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<queue>
 4 #include<cstring>
 5 
 6 using namespace std;
 7 
 8 const int INF = 0x7fffffff;
 9 const int MAXN = 10010;
10 struct Edge{
11     int from,to,nxt,flow,cost;
12     Edge(){}
13     Edge(int a,int b,int c,int d,int e) {from=a,to=b,nxt=c,flow=d,cost=e;}
14 }e[100100];
15 int dis[MAXN],head[MAXN],pre[MAXN]; // pre记录边
16 bool vis[MAXN];
17 int n,m,s,t,tot=1,flw,cost,ans1,ans2;
18 queue<int>q;
19 
20 int read()
21 {
22     int x = 0,f = 1;char ch = getchar();
23     while (ch<'0'||ch>'9') {if (ch=='-')f=-1; ch = getchar();}
24     while (ch>='0'&&ch<='9') x = x*10+ch-'0', ch = getchar();
25     return x*f;
26 }
27 void add_edge(int u,int v,int w,int c) 
28 {
29     e[++tot] = Edge(u,v,head[u],w,c);
30     head[u] = tot;
31     e[++tot] = Edge(v,u,head[v],0,-c);
32     head[v] = tot;
33 }
34 bool spfa()
35 {
36     memset(vis,false,sizeof(vis));
37     memset(pre,0,sizeof(pre));
38     for (int i=1; i<=n; ++i) dis[i] = INF;
39     dis[s] = 0,vis[s] = true,pre[s] = 0;
40     q.push(s);
41     while (!q.empty())
42     {
43         int u = q.front();q.pop();
44         for (int i=head[u]; i; i=e[i].nxt)
45         {
46             int v = e[i].to;
47             if (dis[v]>dis[u]+e[i].cost&&e[i].flow>0)
48             {
49                 dis[v] = dis[u]+e[i].cost;
50                 pre[v] = i;
51                 if (!vis[v])
52                 {
53                     vis[v] = true;
54                     q.push(v);
55                 }
56             }
57         }
58         vis[u] = false;
59     }
60     if (dis[t]!=INF) return 1;
61     return 0;
62 }
63 void flow()
64 {
65     int mn = INF;
66     for (int i=t; i!=s; i=e[pre[i]].from)
67         mn = min(e[pre[i]].flow,mn);
68     for (int i=t; i!=s; i=e[pre[i]].from)
69     {
70         e[pre[i]].flow -= mn;
71         e[pre[i]^1].flow += mn;
72         ans2 += e[pre[i]].cost*mn;
73     }
74     ans1 += mn;
75 }
76 int main()
77 {
78     n = read(),m = read(),s = read(),t = read();
79     for (int a,b,c,d,i=1; i<=m; ++i)
80     {
81         a = read(),b = read(),c = read(),d = read();
82         add_edge(a,b,c,d);
83     }
84     while (spfa()) flow();
85     printf("%d %d",ans1,ans2);
86     return 0;
87 }
View Code

 

 

posted @ 2017-08-13 16:45  MJT12044  阅读(268)  评论(0编辑  收藏  举报