3730: 震波
3730: 震波
分析:
动态点分治。
求距离小于等于k的点权和。
建出点分树,然后对于每个分治中心,维护连通块到这个点的所有距离,因为要容斥掉多计算的,所以在维护这个点到这个分治中心在点分树的父节点的距离。
动态开点线段树,下标为距离,记录权值和。
空间复杂福:$nlog^2n$,时间复杂度$nlog^2n$。加上大常数后,跑的有点慢,加上fread后,14904ms卡过。
代码:
#include<cstdio> #include<algorithm> #include<iostream> #include<cstring> #include<cmath> #include<cctype> #include<set> #include<queue> #include<vector> #include<map> #include<bitset> #define fore(i, u, v) for (int i = head[u], v = e[i].to; i; i = e[i].nxt, v = e[i].to) using namespace std; typedef long long LL; char buf[100000], *p1 = buf, *p2 = buf; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++) inline int read() { int x=0,f=1;char ch=nc();for(;!isdigit(ch);ch=nc())if(ch=='-')f=-1; for(;isdigit(ch);ch=nc())x=x*10+ch-'0';return x*f; } const int N = 100005; struct Edge { int to, nxt; } e[N << 1]; int head[N], dep[N], f[N << 1][20], Log[N << 1], pos[N], siz[N], val[N], fa[N]; int En, Index, TreeIndex, Mn, Root, n; bool vis[N]; int sum[N * 200], ls[N * 200], rs[N * 200], Ra[N], Rb[N]; inline void add_edge(int u,int v) { ++En; e[En].to = v, e[En].nxt = head[u]; head[u] = En; ++En; e[En].to = u, e[En].nxt = head[v]; head[v] = En; } void update(int l,int r,int &now,int p,int v) { if (!now) now = ++TreeIndex; sum[now] += v; if (l == r) return ; int mid = (l + r) >> 1; if (p <= mid) update(l, mid, ls[now], p, v); else update(mid + 1, r, rs[now], p, v); } int query(int l,int r,int now,int p) { if (!now) return 0; if (l == r) return sum[now]; int mid = (l + r) >> 1; if (p <= mid) return query(l, mid, ls[now], p); else return query(mid + 1, r, rs[now], p) + sum[ls[now]]; } void predfs(int u,int fa) { pos[u] = ++Index; f[Index][0] = dep[u]; fore (i, u, v) if (v != fa) dep[v] = dep[u] + 1, predfs(v, u), f[++Index][0] = dep[u]; } void prermq() { for (int i = 2; i <= Index; ++i) Log[i] = Log[i >> 1] + 1; for (int j = 1; j <= Log[Index]; ++j) for (int i = 1; i + (1 << j) - 1 <= Index; ++i) f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); } int LCA(int x,int y) { x = pos[x], y = pos[y]; if (x > y) swap(x, y); int k = Log[y - x + 1]; return min(f[x][k], f[y - (1 << k) + 1][k]); } int getdis(int x,int y) { return dep[x] + dep[y] - 2 * LCA(x, y); } void getroot(int u,int fa,int Size) { int mx = 0; siz[u] = 1; fore (i, u, v) if (!vis[v] && v != fa) getroot(v, u, Size), siz[u] += siz[v], mx = max(mx, siz[v]); mx = max(mx, Size - siz[u]); if (mx < Mn) Mn = mx, Root = u; } void work(int u,int pre,int r) { update(0, n - 1, Ra[r], getdis(u, r), val[u]); if (fa[r]) update(0, n - 1, Rb[r], getdis(u, fa[r]), val[u]); siz[u] = 1; fore (i, u, v) if (!vis[v] && v != pre) work(v, u, r), siz[u] += siz[v]; } void solve(int u) { work(u, 0, u); vis[u] = 1; fore (i, u, v) if (!vis[v]) Mn = 1e9, getroot(v, u, siz[v]), fa[Root] = u, solve(Root); } void Change(int x,int y) { for (int i = x; i; i = fa[i]) { update(0, n - 1, Ra[i], getdis(x, i), y - val[x]); if (fa[i]) update(0, n - 1, Rb[i], getdis(x, fa[i]), y - val[x]); } val[x] = y; } int Ask(int x,int k) { LL ans = 0; for (int i = x; i; i = fa[i]) { if (getdis(i, x) <= k) ans += query(0, n - 1, Ra[i], k - getdis(x, i)); if (fa[i] && getdis(x, fa[i]) <= k) ans -= query(0, n - 1, Rb[i], k - getdis(x, fa[i])); } return ans; } int main() { n = read();int m = read(); for (int i = 1; i <= n; ++i) val[i] = read(); for (int i = 1; i < n; ++i) add_edge(read(), read()); predfs(1, 0); prermq(); Mn = 1e9, getroot(1, 0, n); solve(Root); int opt, x, y, lastans = 0; while (m --) { opt = read(), x = read() ^ lastans, y = read() ^ lastans; if (opt) Change(x, y); else printf("%d\n", lastans = Ask(x, y)); } return 0; }