4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物
分析:
求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$
设旋转了j位,每一位加上了c。
$\sum\limits_{i=1}^{n}(x_{i+j}+c-y_i)^2$
$=\sum\limits_{i=1}^{n}x_{i+j}^2+y_i^2+c^2+2x_{i+j}c-2y_ic-2x_{i+j}y_i$
$=\sum x_i^2+\sum y_i^2+nc^2+2c \sum (x_i-y_i)-2\sum x_{i+j}y_i$
发现只有最后一项是要求的。
$\sum x_{i+j}y_i$ 然后把y翻转一下,就是$\sum x_{i+j}y_{n - i +1}$,再把x加倍即可。
考虑为什么这样就解决了,如果不旋转,那么$a[1],a[2],a[3]$与$b[1],b[2],b[3]$相乘,那么得到的$c[4]=a[1] \times b[3]+a[2]\times b[2]+a[3]\times b[1]$,所以如果翻转b,c[4]就是旋转0位的答案。在a后面加倍一次,得到那么f[5]就是旋转1位的答案,同理f[6]是旋转2位的答案。
而且c是可以直接求出的,可以不用枚举,戳这。
代码:
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<cmath> #include<cctype> #include<set> #include<queue> #include<vector> #include<map> using namespace std; typedef long long LL; inline int read() { int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1; for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f; } const int N = 200005, INF = 1e9; const double Pi = acos(-1.0), eps = 1e-10; int rev[N], f[N], x[N], y[N]; struct Com{ double x, y; Com(double _x = 0.0,double _y = 0) { x = _x, y = _y; } }a[N], b[N]; Com operator + (const Com &A,const Com &B) { return Com(A.x + B.x, A.y + B.y); } Com operator - (const Com &A,const Com &B) { return Com(A.x - B.x, A.y - B.y); } Com operator * (const Com &A,const Com &B) { return Com(A.x * B.x - A.y * B.y, A.x * B.y + A.y * B.x); } void FFT(Com *a,int n,int ty) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap(a[i], a[rev[i]]); Com w1, w, t, u; for (int m = 2; m <= n; m <<= 1) { w1 = Com(cos(2 * Pi / m), ty * sin(2 * Pi / m)); for (int i = 0; i < n; i += m) { w = Com(1, 0); for (int k = 0; k < (m >> 1); ++k) { t = w * a[i + k + (m >> 1)]; u = a[i + k]; a[i + k] = u + t; a[i + k + (m >> 1)] = u - t; w = w * w1; } } } } void mul(Com *a,Com *b,int len) { FFT(a, len, 1); FFT(b, len, 1); for (int i = 0; i <= len; ++i) a[i] = a[i] * b[i]; FFT(a, len, -1); for (int i = 0; i <= len; ++i) f[i] = (int)(a[i].x / (double)len + 0.5); } int main() { int n = read(), m = read(), len = 1, lg = 0, Sx = 0, Sy = 0, S = 0; while (len <= n + n) len <<= 1, lg ++; for (int i = 1; i <= len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lg - 1)); for (int i = 0; i < n; ++i) x[i] = read(), Sx += (x[i] * x[i]), S += 2 * x[i]; for (int i = 0; i < n; ++i) y[i] = read(), Sy += (y[i] * y[i]), S -= 2 * y[i]; for (int i = 0; i < n + n; ++i) a[i] = Com(x[i % n], 0); for (int i = 0; i < n; ++i) b[i] = Com(y[n - i - 1], 0); mul(a, b, len); int ans = INF; for (int c = -m; c <= m; ++c) for (int i = n; i < n + n; ++i) ans = min(ans, Sx + Sy + c * S + n * c * c - 2 * f[i]); cout << ans; return 0; }