4820: [Sdoi2017]硬币游戏

4820: [Sdoi2017]硬币游戏

链接

分析:

  期望dp+高斯消元。

  首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大。但是AC自动机上末尾节点只有n个,并且只有n个有用。所以考虑优化一下。

  一个串内部的转移是没有必要的,考虑转移到结尾节点的转移。

  当前的一个串S如果加入一个字符串T,变成ST,那么一定会结束,因为T这个字符串出现了。但是可能在T的某个前缀就出现了, 即存在一个字符串的后缀是T的前缀,那么统计出这样的转移,然后高斯消元。

  加了eps后WA了?

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL;

inline int read() {
    int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
    for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f;
}

const int N = 305;
char s[N][N];
int p[N][N], n, m;
double mi[N], A[N][N];

void init(char *s,int *p) {
    for (int i = 2; i <= m; ++i) {
        int j = p[i - 1];
        while (j && s[j + 1] != s[i]) j = p[j];
        if (s[j + 1] == s[i]) j ++;
        p[i] = j;
    }
}
double Calc(char *a,char *b,int *p,bool f) {
    int j = 0;
    for (int i = 1; i <= m; ++i) {
        while (j && b[i] != a[j + 1]) j = p[j];
        if (b[i] == a[j + 1]) j ++;
    }
    if (f) j = p[j];
    double res = 0;
    while (j) res += mi[m - j], j = p[j];
    return res;
}
void Gauss() {
    for (int k = 0; k <= n; ++k) {
        int r = k;
        for (int i = k + 1; i <= n; ++i) if (fabs(A[i][k]) > fabs(A[r][k])) r = i;
        if (r != k) for (int j = 0; j <= n + 1; ++j) swap(A[r][j], A[k][j]);
        for (int i = k + 1; i <= n; ++i) {
            if (fabs(A[i][k]) > 0) {
                double t = A[i][k] / A[k][k];
                for (int j = 0; j <= n + 1; ++j) A[i][j] -= t * A[k][j];
            }
        }
    }
    for (int i = n; i >= 0; --i) {
        for (int j = i + 1; j <= n; ++j) A[i][n + 1] -= A[i][j] * A[j][n + 1];
        A[i][n + 1] /= A[i][i];
    }
}
int main() {
    n = read(), m = read();
    for (int i = 1; i <= n; ++i) {
        scanf("%s", s[i] + 1);
        init(s[i], p[i]);
    }
    mi[0] = 1;
    for (int i = 1; i <= m; ++i) mi[i] = mi[i - 1] * 0.5;
    for (int i = 1; i <= n + 1; ++i) A[0][i] = 1;
    for (int i = 1; i <= n; ++i) {
        A[i][0] = -mi[m]; A[i][i] = 1.0;
        for (int j = 1; j <= n; ++j) 
            A[i][j] += Calc(s[i], s[j], p[i], i == j); // 计算字符串i转移到j的概率,即求i的前缀等于j的后缀 
    }
    Gauss();
    for (int i = 1; i <= n; ++i) printf("%.10lf\n",A[i][n + 1]);
    return 0;
}

 

posted @ 2019-02-18 10:53  MJT12044  阅读(212)  评论(0编辑  收藏  举报