4820: [Sdoi2017]硬币游戏
4820: [Sdoi2017]硬币游戏
分析:
期望dp+高斯消元。
首先可以建出AC自动机,Xi表示经过节点i的期望次数,然后高斯消元,这样点的个数太多,复杂度太大。但是AC自动机上末尾节点只有n个,并且只有n个有用。所以考虑优化一下。
一个串内部的转移是没有必要的,考虑转移到结尾节点的转移。
当前的一个串S如果加入一个字符串T,变成ST,那么一定会结束,因为T这个字符串出现了。但是可能在T的某个前缀就出现了, 即存在一个字符串的后缀是T的前缀,那么统计出这样的转移,然后高斯消元。
加了eps后WA了?
代码:
#include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #include<iostream> #include<cctype> #include<set> #include<vector> #include<queue> #include<map> #define fi(s) freopen(s,"r",stdin); #define fo(s) freopen(s,"w",stdout); using namespace std; typedef long long LL; inline int read() { int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1; for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f; } const int N = 305; char s[N][N]; int p[N][N], n, m; double mi[N], A[N][N]; void init(char *s,int *p) { for (int i = 2; i <= m; ++i) { int j = p[i - 1]; while (j && s[j + 1] != s[i]) j = p[j]; if (s[j + 1] == s[i]) j ++; p[i] = j; } } double Calc(char *a,char *b,int *p,bool f) { int j = 0; for (int i = 1; i <= m; ++i) { while (j && b[i] != a[j + 1]) j = p[j]; if (b[i] == a[j + 1]) j ++; } if (f) j = p[j]; double res = 0; while (j) res += mi[m - j], j = p[j]; return res; } void Gauss() { for (int k = 0; k <= n; ++k) { int r = k; for (int i = k + 1; i <= n; ++i) if (fabs(A[i][k]) > fabs(A[r][k])) r = i; if (r != k) for (int j = 0; j <= n + 1; ++j) swap(A[r][j], A[k][j]); for (int i = k + 1; i <= n; ++i) { if (fabs(A[i][k]) > 0) { double t = A[i][k] / A[k][k]; for (int j = 0; j <= n + 1; ++j) A[i][j] -= t * A[k][j]; } } } for (int i = n; i >= 0; --i) { for (int j = i + 1; j <= n; ++j) A[i][n + 1] -= A[i][j] * A[j][n + 1]; A[i][n + 1] /= A[i][i]; } } int main() { n = read(), m = read(); for (int i = 1; i <= n; ++i) { scanf("%s", s[i] + 1); init(s[i], p[i]); } mi[0] = 1; for (int i = 1; i <= m; ++i) mi[i] = mi[i - 1] * 0.5; for (int i = 1; i <= n + 1; ++i) A[0][i] = 1; for (int i = 1; i <= n; ++i) { A[i][0] = -mi[m]; A[i][i] = 1.0; for (int j = 1; j <= n; ++j) A[i][j] += Calc(s[i], s[j], p[i], i == j); // 计算字符串i转移到j的概率,即求i的前缀等于j的后缀 } Gauss(); for (int i = 1; i <= n; ++i) printf("%.10lf\n",A[i][n + 1]); return 0; }