3495: PA2010 Riddle

3495: PA2010 Riddle

链接

分析:

  每个点要么建首都,要么不建,并且一个点建了,会导致一些点不能建。所以可以考虑2-sat。

  但是如果在每个郡里两两连边,边数是n^2的。

  考虑用前缀优化。

  S[i]表示对于当前郡,前i个点中是否存在一个首都,A[i]表示i这个点是否建首都。

  1、那么有A[i]=1,则S[i]=1,同样有它的逆否命题:S[i]=0,则A[i]=0。

  2、根据前缀的性质有S[i-1]=1,则S[i]=1,逆否命题:S[i]=0,则S[i-1]=0。

  3、由于每个郡只能有一个首都,所以A[i]=1,则S[i-1]=0,逆否命题:S[i-1]=1,则A[i]=0。

  4、还有满足每条边两边至少一个首都,u=0,则v=1,逆否命题:v=0,则u=1

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long LL;

inline int read() {
    int x=0,f=1;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
    for(;isdigit(ch);ch=getchar())x=x*10+ch-'0';return x*f;
}

const int N = 4000005;
struct Edge{ int to, nxt; } e[N << 1];
int head[N], dfn[N], low[N], bel[N], sk[N], top, Index, tot, En;
bool vis[N];

inline void add_edge(int u,int v) {
    ++En; e[En].to = v, e[En].nxt = head[u]; head[u] = En;
}
void tarjan(int u) {
    low[u] = dfn[u] = ++Index;
    sk[++top] = u; vis[u] = 1;
    for (int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
        }
        if (vis[v]) low[u] = min(low[u], dfn[v]);
    }
    if (low[u] == dfn[u]) {
        ++tot;
        do {
            vis[sk[top]] = 0;
            bel[sk[top]] = tot;
            top --;
        } while (sk[top + 1] != u);
    }
}
int main() {
    int n = read(), m = read(), k = read();
    for (int u, v, i = 1; i <= m; ++i) {
        u = read(), v = read();
        add_edge(u + n, v);add_edge(v + n, u);
    }
    for (int i = 1; i <= n; ++i) // A[i]=1,S[i]=1
        add_edge(i, i + 2 * n), add_edge(i + 3 * n, i + n);
    for (int cnt, now, last, i = 1; i <= k; ++i) {
        cnt = read(), last = read();
        for (int j = 2; j <= cnt; ++j) {
            now = read();
            add_edge(last + 2 * n, now + 2 * n);add_edge(now + 3 * n, last + 3 * n); // S[i-1]=1,S[i]=1
            add_edge(now, last + 3 * n); add_edge(last + 2 * n, now + n); // A[i]=1,S[i-1]=0
            last = now;
        }
    }
    for (int i = 1; i <= (n << 2); ++i) if (!dfn[i]) tarjan(i);
    for (int i = 1; i <= n; ++i) {
        if (bel[i] == bel[i + n] || bel[i + 2 * n] == bel[i + 3 * n]) {
            puts("NIE"); return 0; 
        }
    }
    puts("TAK");
    return 0;
}

 

posted @ 2019-01-19 14:55  MJT12044  阅读(285)  评论(1编辑  收藏  举报