动态规划-多重背包问题
// 朴素解法 #include <iostream> using namespace std; const int N = 110; int n, m; int s[N], v[N], w[N]; int f[N][N]; int main() { cin >> n >> m; for (int i = 1; i <= n; ++ i) cin >> v[i] >> w[i] >> s[i]; for (int i = 1; i <= n; ++ i) for (int j = 0; j <= m; ++ j) for (int k = 0; k <= s[i] && k * v[i] <= j; ++ k) f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]); cout << f[n][m] << endl; return 0; } // 二进制优化 #include <iostream> using namespace std; const int N = 25000, M = 2010; int v[N], w[N], f[M]; int n, m; int main() { cin >> n >> m; int cnt = 0; for (int i = 1; i <= n; ++ i) { int a, b, s; cin >> a >> b >> s; int k = 1; while (k <= s) { cnt ++; v[cnt] = k * a; w[cnt] = k * b; s = s - k; k = k * 2; } if (s > 0) { cnt ++; v[cnt] = s * a; w[cnt] = s * b; } } n = cnt; for (int i = 1; i <= n; ++ i) for (int j = m; j >= v[i]; -- j) f[j] = max(f[j], f[j - v[i]] + w[i]); cout << f[m] << endl; return 0; }